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Node Channels Wickh Height Frequency
1UP input Charnels IXRGB=3 1920 1080 | S00WHz
1UP 7 X7 Convolution 64 1920 1080 | S00MHz
1UP 1 X1 Convolution &4 1920 1080 | S00MH:
1UP 3 X 3 Convolution 64 1920 1080 | S00MHz
1UP 1 X1 Corwolution 64 1920 1080 | S00MHz
1UP Concatenation 128 1520 1080 | S00MHz
1UP 2 X2 MaxPool 128 | 1920/2=960 | 1080/2=540 1250MH:
1UP 1 X1 Convolution 128 960 540 1 125MHz
1UP 3 X 3 Convolution 128 960 540 1 125MHz
1UP 1X1 Convolution 128 960 540 1 125WHz
1UP Concatenation 256 960 540 1 1250Hz
1UP 2 X2 MaxPool 256 1 960/2=480 540/2 = 270 312 MHz
1UP 1X 1 Convalution 256 480 270 1 312MHz
2UP 3 X 3 Convalution 256 480 270 | 3L2MHz
2UP 1 X1 Convolution 256 480 270 | 312MH:z
1UP Concatenation 512 480 2701 312MHz
1UP 2 X 2 MaxPodl 512 | 480/2=240 270/2 =135 78 MHz
1UP 1X 1 Convolution 512 240 135 7.8 Mz
2UP 3 X 3 Convolution 512 240 135 78 MHz
2UP 1X 1 Convolution 512 240 135 T8MHz
1UP Concatenation 1024 240 135 783 MHz
1UP Global  Average 1024 1 1 &0 Hz
1UP Qutput Channels 1024 1 1 60Hz
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Node Channels Width Height Frequency
4UP Input Channels 4XRGB=12 | 1920/4=48D 1080 | 150+
AP TXT Corwolution A% 16 =64 | 1920/4=480 080 | 15M4
4P 1X 1 Corwolution AX16=64 | 1920/4=480 080 | 15MH
AUP 3X 3 Convolution 4X16=064 | 1920/4=4%0 080 | 1550
4UP 1X1 Corwolution 4X16=64 | 1920/4=480 1080 | 125z
4UP Concatenation 4X32=128 1920/4 =480 1080 15 M
AUP to 2UP 2 X 2 MaxPool 2X64=128 960/2=480 | 1080/2=540 62.5 MHz
2UP 1X 1 Corwolution 2X64=128 960/2 =480 540 | G25MHz
2UP 3X 3 Convolution 2X64=128 960/2 =480 540 | B25MHz
2UP 1X 1 Convolution 2X64=128 960/2= 480 540 | 625MHz
2UP Concatenation 2X128=256 960/2 =480 540 | 625MHz
2UP to 1UP 2 X 2 MaxPool 1X 25 =256 | 480/1=480 S0/2=270 | 312 WMk
1UP 1X 1 Convolution 1X256=256 480 271 3L2MHz
2UP 3X3 Convolution 1X256=1256 430 70 1 312 Mz
2UP 1X 1 Corwolution 1X256=256 480 270 1 3L2MHz
1UP Concatenation 1X512=512 480 20 1 312MH
1UP 2 X 2 MawPool 1X512=512 480/2 =240 270/2=135 780MHz
1UP 1X 1 Corvolution 1X512=512 240 135 78MHz
2UP3X3  Corwolution 1X512=512 240 135 1 78MHz
2UP 1X 1 Conwolution 1X512=512 240 135 T8 MHz
IUP Concatenation 1X1024=1024 240 135 78MHz
1UP Global Average 1X1024=1024 1 1 &0Hz
1UP Cutput Channels 1024 1 1 60 Hz
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UNBOUNDED PARALLEL
IMPLEMENTATION OF DEEP NEURAL
NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The instant application is a continuation-in-part of co-
pending application Ser. No. 17/231,711 filed on 15 Apr.
2021, which is a continuation-in-part of co-pending appli-
cation Ser. No. 17/071,875 filed on 15 Oct. 2020. All
disclosure of the parent applications is incorporated at least
by reference.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention is in the technical area of computer
operations involving matrix inputs and outputs and pertains
more specifically to circuits designed for mass multiplica-
tion in matrix operations.

2. Description of Related Art

Use of computers in matrix operations is well-known in
the art, specific examples being image processing and devel-
opment and use of neural networks. Neural networks are part
and parcel of artificial intelligence, and as such are, at the
time of filing the instant patent application, a very popular
subject in development of intellectual property. Generally
speaking, in computer operations of this sort, substantial
numbers of input values are processed in a regular pattern,
the pattern being in most instances a matrix. Processing of
input values may involve biasing and applying weights by
which individual input values may be multiplied.

The present inventor believes that the sophisticated and
computationally intense operations in the technology of
neural networks wherein incoming values are multiplied by
each of a plurality of weight values, is a step open to
innovation to provide distinct advantages in the technology.
The inventor also believes that there are advantages to be
gained in revising the order of mathematical processes to be
applied.

The present inventor believes that he has determined a
general change in the order and manner of mathematical
processes to be implemented in such applications that may
well produce a very significant reduction in time and cost in
such operations.

BRIEF SUMMARY OF THE INVENTION

In one embodiment of the invention an integrated circuit
(IC) is provided, comprising an input port receiving a first
ordered stream of input values from a source array, a first set
of functional circuits implementing a first aperture function,
the first set receiving the first ordered stream of input values,
producing partial results by individual ones of the first set of
functional circuits as required input values are received,
retaining the partial results for periods of time, and com-
bining the partial results at required points in time, produc-
ing a first ordered stream of output values, a second set of
functional circuits implementing a second aperture function,
the second set receiving the first ordered stream of output
values as a second ordered stream of input values, producing
partial results by individual ones of the second set of
functional circuits as required inputs are received, retaining
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the partial results for periods of time, and combining the
partial results at required points in time, producing a second
ordered stream of output values, additional sets of functional
circuits following the first and the second set of functional
circuits, each additional set in order receiving the ordered
stream of output values of preceding sets as an ordered
stream of input values, producing partial results by indi-
vidual ones of the functional circuits as required inputs are
received, retaining the partial results for periods of time, and
combining the partial results at required points in time,
producing a final ordered stream of output values, and an
output port receiving a last ordered output stream from the
sets of functional circuits and enabling the output stream to
be transmitted off the IC.

In one embodiment ordered stream of independent input
values are values ordered from input positions of the source
array from a first input point at a first column of a first row,
taken across columns of the first row, then down row by row
and across columns of the rows to a final point at the last
column of the last row. In one embodiment the source array
is an image frame having RGB values at each input position.
In one embodiment all circuitry is active simultaneously, and
the output stream of the IC at the output port is produced
while inputs are being received at the input port. And in one
embodiment the output stream of one or more sets of
functional circuits implementing an aperture function is
conducted as an input stream to two or more following sets
of functional circuits implementing aperture functions.

In one embodiment outputs of the two or more following
sets of functional circuits are combined and conducted to a
single set of functional circuits implementing an aperture
function. Also, in one embodiment the aperture function of
a set of functional circuits is applied only to input positions
wherein the entire kernel of the aperture function is within
the outer boundaries of the source array. Also, in one
embodiment the aperture function of a set of functional
circuits is applied to points in order of the input array, and
output values associated with points outside the outer
boundaries are synthesized.

In another aspect of the invention a system of connected
integrated circuits (ICs) implementing a neural network is
provided, comprising a first IC implementing a first portion
of the neural network, the first IC comprising an input port
receiving a first ordered stream of input values from a source
array, a first set of functional circuits implementing a first
aperture function, the first set receiving the first ordered
stream of input values, producing partial results by indi-
vidual ones of the first set of functional circuits as required
input values are received, retaining the partial results for
periods of time, and combining the partial results at required
points in time, producing a first ordered stream of output
values, a second set of functional circuits implementing a
second aperture function, the second set receiving the first
ordered stream of output values as a second ordered stream
of input values, producing partial results by individual ones
of the second set of functional circuits as required inputs are
received, retaining the partial results for periods of time, and
combining the partial results at required points in time,
producing a second ordered stream of output values, addi-
tional sets of functional circuits following the first and the
second set of functional circuits, each additional set in order
receiving the ordered stream of output values of preceding
sets as an ordered stream of input values, producing partial
results by individual ones of the functional circuits as
required inputs are received, retaining the partial results for
periods of time, and combining the partial results at required
points in time, producing a final ordered stream of output
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values, and an output port receiving a last ordered output
stream from the descending sets of functional circuits and
enabling the output stream to be transmitted off the IC, a
second IC implementing a second portion of the neural
network, the second IC comprising functional circuits
implementing aperture functions connected in order from an
input port of the second IC, connected to the output port of
the first IC, receiving the stream of output values produced
by the first IC, and additional ICs implementing additional
portions of the neural network, each additional IC connected
to the output port of the previous IC, receiving the output
stream of the previous IC as an input stream, wherein a final
IC provides an output stream of the DNN.

In another aspect of the invention an integrated circuit
(IC) is provided, comprising an input port receiving a first
ordered stream of input values from a source array in sets of
values from two or more adjacent input positions in each
input interval, a first set of functional circuits implementing
a first aperture function, the first set receiving the first
ordered stream of input values in sets of values from two or
more input positions, producing partial results by individual
ones of the first set of functional circuits as required input
values are received, retaining the partial results for periods
of time, and combining the partial results at required points
in time, producing a first ordered stream of output values, the
first set of functional circuits comprising duplicate func-
tional circuits accommodating processing of the repeated
sets of input values, a second set of functional circuits
implementing a second aperture function, the second set
receiving the first ordered stream of output values as a
second ordered stream of input values producing a second
ordered stream of output values, additional sets of functional
circuits implementing aperture functions following the first
and the second set of functional circuits, each additional set
in order receiving the ordered stream of output values of the
preceding sets as an ordered stream of input values, the
additional sets of functional circuits producing a final
ordered stream of output values, and an output port receiving
a last ordered output stream from the sets of functional
circuits and enabling the output stream to be transmitted off
the IC.

In one embodiment the ordered stream of input values is
received at the input port of the IC in sets of N input points
in each input interval, and the sets of functional circuits for
each node are implemented on the IC in multiple copies as
needed to enable processing of N sets of input values in
parallel. Also, in one embodiment the ordered stream of
input values are values ordered from input positions of the
source array from a first set beginning at an input position at
a first column of a first row, taken as N positions in adjacent
order from the first position, then in sets of N positions
across columns of the first row in each input interval, then
down row by row and across columns of the rows to a final
position at the last column of the last row. Also, in one
embodiment the width of the input array is an integral
multiple of N. Also, in one embodiment the source array is
an image frame of RGB values at each input position. And
in one embodiment all circuitry is active simultaneously, and
the output stream of the IC is produced while inputs are
being received.

In one embodiment individual ones of the sets of func-
tional circuitry further comprise retention circuitry enabling
retention of one or more sets of input values received in
previous input intervals, assuring that all necessary input
values are available to produce required output values. Also,
in one embodiment the kernel of the aperture function of the
first set of functional circuits is applied only to input
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positions wherein the kernel is within the outer boundaries
of the source array. Also, in one embodiment the kernel of
the aperture function of the first set of functional circuits is
applied to points in order of the input array, and output
values associated with positions outside the outer boundaries
of the source array are synthesized.

In another aspect of the invention a system of connected
integrated circuits (ICs) implementing a neural network is
provided, comprising a first IC implementing a first portion
of the neural network, the first IC comprising an input port
receiving a first ordered stream of input values from a source
array in repeated sets of values from two or more adjacent
input positions in each input interval, a first set of functional
circuits implementing a first aperture function, the first set
receiving the first ordered stream of input values in sets of
two or more input points, producing partial results by
individual ones of the first set of functional circuits as
required input values are received, retaining the partial
results for periods of time, and combining the partial results
at required points in time, producing a first ordered stream
of output values, a second set of functional circuits imple-
menting a second aperture function, the second set receiving
the first ordered stream of output values as a second ordered
stream of input values, producing partial results by indi-
vidual ones of the second set of functional circuits as
required inputs are received, retaining the partial results for
periods of time, and combining the partial results at required
points in time, producing a second ordered stream of output
values, additional sets of functional circuits following the
first and the second set of functional circuits, each additional
set in order receiving the ordered stream of output values of
preceding sets as an ordered stream of input values, pro-
ducing partial results by individual ones of the functional
circuits as required inputs are received, retaining the partial
results for periods of time, and combining the partial results
at required points in time, producing a final ordered stream
of output values, and an output port receiving a last ordered
output stream from the descending sets of functional circuits
and enabling the output stream to be transmitted off the IC,
a second IC implementing a second portion of the neural
network, the second IC comprising functional circuits
implementing aperture functions connected in order from an
input port of the second IC that is connected to the output
port of the first IC, receiving the stream of output values
produced by the first IC, and additional ICs implementing
additional portions of the neural network, each additional IC
connected to the output port of the previous IC, receiving the
output stream of the previous IC as an input stream, wherein
a final IC provides an output stream of the neural network.

In one embodiment individual ones of the sets of func-
tional circuitry further comprise retention circuitry enabling
retention of one or more sets of input values received in
previous input intervals, assuring that all necessary input
values are available to produce required output values.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates an embodiment where mass multipliers
applied to each common source are fixed and wired directly
into a processing circuit.

FIG. 2 illustrates an embodiment where the mass multi-
pliers applied to each common source are dynamic and
routed through multiplexors to the processing circuit.

FIG. 3 illustrates a simple embodiment where shifted
terms corresponding to bits set in each mass multiplier are
summed to form a product.
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FIG. 4 illustrates an enhanced embodiment where addi-
tion and subtraction of shifted terms from each other are
mixed to form an equivalent solution of lower complexity.

FIG. 5A illustrates a pipelined embodiment that maxi-
mizes clock frequency by building sub-compositions from
only pairwise operations.

FIG. 5B illustrates an embodiment wherein the multiples
are formed directly by a fixed set of cases without reference
to standard arithmetic operations.

FIG. 6 illustrates a pipelined embodiment that maximizes
circuit density by building sub-compositions from up to
four-wise operations.

FIG. 7 is a diagram illustrating structure and connectivity
in an embodiment of the invention receiving an input stream,
preprocessing the input stream, and feeding results through
a unique digital device to produce an output stream.

FIG. 8A is a diagram illustrating structure and connec-
tivity producing source channel products.

FIG. 8B is a diagram illustrating additional detail of
control apparatus and functions in an embodiment of the
invention.

FIG. 9A is a partial illustration of a general case of
pipelined operations in an embodiment of the invention.

FIG. 9B is another partial illustration of the general case
of pipelined operations in an embodiment of the invention.

FIG. 9C is another partial illustration of the general case
of pipelined operations in an embodiment of the invention.

FIG. 10A is a diagram illustrating internal structure of
compositors 905a, 9055, and 905¢ of FIGS. 9A and 9B in an
embodiment of the invention.

FIG. 10B is a diagram illustrating internal structure of
compositors 902a, 9026 and 902¢ of FIGS. 9A and 9B in an
embodiment of the invention.

FIG. 10C is a diagram illustrating internal structure of
compositor 904 of FIG. 9A in an embodiment of the
invention.

FIG. 10D is a diagram illustrating internal structure of
compositor 901 of FIG. 9A in an embodiment of the
invention.

FIG. 10E is a diagram illustrating internal structure of
compositors 903a, 9035 and 903¢ of FIGS. 9B and 9C in an
embodiment of the invention.

FIG. 10F is a diagram illustrating internal structure of
compositors 907a, 9075 and 907¢ of FIGS. 9A and 9B in an
embodiment of the invention.

FIG. 10G is a diagram illustrating internal structure of
compositor 906 of FIG. 9A in an embodiment of the
invention.

FIG. 11 is a diagram describing internal structure and
function of delay stages 908a, 9085, 908c, 9084, 908¢ and
908/ of FIG. 9C in an embodiment of the invention.

FIG. 12 is a diagram illustrating operation of delay stage
909 of FIG. 9C in an embodiment of the invention.

FIG. 13 is a diagram illustrating operation of delay stages
910a and 9105 of FIG. 9C in an embodiment of the
invention.

FIG. 14 is a diagram illustrating operation of finalization
step 911 in FIG. 9C.

FIG. 15 is a diagram illustrating a specific case of
pipelined operations in an embodiment of the invention that
implements a 5 by 5 convolution node.

FIG. 16 illustrates an IC in an embodiment of the inven-
tion for a 4x4 aperture function.

FIG. 17A illustrates an IC with circuitry implementing a
part of a deep neural network streaming input channels
individually.
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FIG. 17B illustrates the IC with circuitry implementing
another part of the deep neural network.

FIG. 18A illustrates an IC with circuitry implementing
part of a deep neural network streaming four input channels
simultaneously.

FIG. 18B illustrates circuitry implementing another part
of the deep neural network of FIG. 18A.

FIG. 19 is a table illustrating array stream size for the
DNN of FIGS. 17A and B.

FIG. 20 is a table illustrating array stream size for the
DNN of FIGS. 18A and B.

FIG. 21 illustrates circuitry of an IC performing a 3 by 3
Convolution node streaming four input channels simultane-
ously.

FIG. 22 illustrates the required arrangement for the circuit
to produce outputs for the 4-up input channels for the
“same” version of the 3 by 3 Convolution.

FIG. 23 illustrates the required arrangement for the circuit
to output two variants of a 1 row by 7 column Convolution
streaming four input channels simultaneously.

FIG. 24A shows an arrangement of a 2 by 2 MaxPool
node over a 4-up data stream.

FIG. 24B shows an arrangement of the 2 by 2 MaxPool
node of FIG. 24A over a 2-up data stream.

FIG. 25 illustrates a contrived example where reducing N
is not possible.

FIG. 26A illustrates a FIFO circuit used to repackage a
4-up stream into a 2-up stream.

FIG. 26B illustrates repackaging a 3-up stream into a 5-up
stream.

FIG. 27A illustrates implementation of a Concatenation
node such that output contains all channels from all sources.

FIG. 27B illustrates implementation of a 4-up Dense
node.

FIG. 27C illustrates implementation of a 4-up Global
Average node.

FIG. 28 illustrates a 4-up implementation of a 3 by 3
Local Average node.

FIG. 29 illustrates another 4-up implementation of a 3 by
3 Local Average node.

FIG. 30A illustrates implementation of a 4-up Subset
node.

FIG. 30B illustrates typical implementation of a 4-up
Crop node.

FIG. 31 illustrates a system of interconnected ICs imple-
menting a neural network.

DETAILED DESCRIPTION OF THE
INVENTION

A wide variety of image and data algorithms make
extensive use of matrix forms of linear algebra both to prove
propositions and to calculate results. In the instant applica-
tion by “an algorithm” is meant a process or set of rules to
be followed in calculations or other problem-solving opera-
tions, especially by a computer. Algorithms are not to be
universally construed as software in this application. Algo-
rithms as described in the instant application may, and
typically are preferably, implemented in hardware.

Matrix operations are defined as orthogonal collections of
one or more dimensions and are generally conceived as
having the same number of elements in every iteration of
each given dimension. By way of example, an M by N
matrix is frequently depicted by an array of values such as:
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a1 a2 ajN-1 aiN
a1 a2 ajN-1 aiN
A=
am-1,1 ApM-12 <+« AM-IN-1 QM-LN
am,l  am2 amN-1  AMN

Conceptually, a matrix may have any number of dimen-
sions and the matrices may be depicted as sets of tables
showing the values for each dimension.

The subset of matrices of the forms M by 1 or 1 by N may
be referred to as vectors which have their own specific
properties and operations defined and are used extensively in
2D and 3D graphic simulations.

A degenerate subset of matrices of the form 1 by 1 may
be referred to as scalars and constitute numbers quite
familiar to the skilled person.

When the values of a matrix are constants, and the
matrices are of compatible dimensions, certain operations
such as multiplication are well defined. A 3 by 4 matrix A
can be multiplied by a 4 by 5 matrix B to form a 3 by 5
matrix C which may often be written as:

AxB=C

4

cij= D aibi
k=1

However, the operation BxA is not well defined because
the inner dimensions do not match (5#3), and k would not
have a single range that is compatible with the indices of B
and A.

A matrix whose elements are vectors or other matrices is
known as a tensor (from which the name of TensorFlow is
derived). A familiar form of a tensor may be an RGB image.
One form of an RGB image is an HDMI frame as a 1080 by
1920 matrix of RGB values each pixel of which is a 3 by 1
vector of color components. A pixel is considered a true
vector because no linear operation of the Red component
affects Green or Blue and vice versa.

An HDMI frame is not generally considered a five-
dimensional matrix because the treatment of positions of
pixels in the image is not related to treatment of the colors.
It is valid and quite meaningful to crop an image by
discarding parts of the image that are not of interest but there
is no corresponding operation to crop color components.
Likewise, there may be many operations on the colors with
easily comprehensible effects that would be meaningless if
applied to the elements of the containing array. So the HDMI
frame is clearly a 2,3 tensor and not a 5D array.

There are many image processing algorithms known that
may be expressed as matrix operations. A matrix operation
is a succinct way of expressing repetitive operations and the
rules of matrix mathematics are instrumental in proving
specific propositions.

Execution of matrix-based algorithms on general purpose
computer processors is generally accomplished by looping
mechanisms, and both computer languages and hardware
CPUs may have features to make such loops eflicient.
However, there is nothing inherent in the mathematics of
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matrix definitions that requires that operations be executed
by any specific method or plan in order to compute correct
results.

A modern hybrid of image processing and cognition is a
convolutional neural network (CNN). While training such
networks has been quite challenging for years, actually
executing trained networks is relatively trivial.

In CNNs each convolutional output element operates by
passing an independent kernel over an input tensor to
produce each component of an output tensor. Typically,
when a neural network is used to process images, the first
layer of the network operates on an input array of the RGB
pixels of the image and produces an output array of related
size containing an arbitrary vector of output components that
is structurally unrelated to the RGB vector of input compo-
nents. The output vector components are generally described
as features or activations and represent the response strength
(degree of recognition) of each kernel. Subsequent layers in
the CNN take output from preceding layers as their input, so
only the very first layer acts on the pixel values; all the rest
act on features to produce more features. Each output feature
of the convolution is unrelated and distinct from every other
feature just as the color components are distinct from one
another.

A common form of a CNN layer is a 3 by 3 Convolution.
In operation a 3 by 3 kernel of constant weights is applied
to each specific position of the input tensor (i.e. image)
element wise; that is, each of the weights is multiplied by the
pixel components at the same relative position in the image
and the products are summed to produce a single component
of the output for that position. A bias constant (which may
be zero) provides the initial value to facilitate solving the
model to arrive at optimal weight values.

If there are three input components, as there are in an
RGB image, then there are three distinct sets of 3 by 3
weights to be applied to each component value (in the case
of the first layer, the colors) but only a single initial bias.
Each convolution of the 3 by 3 by 3 weights plus bias forms
a single output component value corresponding to the posi-
tion at the center of a 3x3 patch of pixels. Each output
channel applies its own 27 weight values in turn, until all
output components for a given patch (the subset of input
components at the same position as the output position and
corresponding to the relative positions of the kernel weights)
have been computed. It is common for a convolution to have
between 64 and 256 output components, each of which has
a unique specific set of 27 weights plus a bias.

In this example each kernel is multiplying its 27 weights
against the same patch of 9 pixels of 3 RGB components.
For a relatively small set of 64 output components, each
individual input component is multiplied by 64 arbitrary and
unrelated weights. After the output components for each
patch are computed, an adjacent patch is loaded from the
image and the full set of weights of the kernel is applied
again. This process continues until the right edge of the
image is reached, and then the patch drops down one row
and starts over from the left edge.

After the first layer is processed, the next convolution
layer processes the output of the first as input to the second
layer. So, a 3 by 3 convolution now has 3 by 3 by 64 weights
to be applied to the 3 by 3 by 64 input components of the
patch. If this layer has 256 outputs, 3x3x64x256=147,456
multiplications must be performed for each output position.
The skilled person will understand that this refers to a single
layer in a Deep Neural Network that may contain more than
40 layers.
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The number of multiplications applied to each element of
a patch is equal to the number of channels in the layer. In a
standard CPU, these must necessarily be done in some
sequence. Many modern CPUs have a capability of execut-
ing sets of multiplies simultaneously, especially if the data
format is small (i.e. 8 bits). In a GPU or TPU, the number
of multipliers available is much higher but each multiplier is
designed to produce a product from two distinct and unre-
stricted factors.

In the current art processors, CPUs, TPUs or GPUs, do not
take advantage of the simple fact that in CNN implemen-
tations one of the factors for multiplication is common for all
the weights applied to an input channel during the process-
ing for a patch.

The inventor in this application proposes a mass multi-
plier that performs all multiplications, otherwise conven-
tionally done sequentially, in a single step. When the weights
of a set of multiplications are all of some small precision (8
bits is typical for a TPU), there are a limited (2°8=256)
number of distinct weights, and a corresponding number of
distinct multiples of the common input (which may be of any
size; no matter what precision the common factor is, there
are still only 256 possible multiples when 8 bit weights are
applied.) In this case there is a distinct advantage to imple-
menting a circuit that produces all the required outputs at
once with many fewer elements than the same number of
unrestricted multipliers.

In an embodiment of the invention an equivalent mass
multiplier is dedicated to a single input channel and is not
always shared. So, the operation has an option of using
several clock cycles and multiple register stages. This allows
the operation to take very simple and efficient forms without
impacting overall throughput of the system.

In common cases where a single dynamic value is mul-
tiplied by many constants, substituting a single multi-stage
mass multiplier circuit, as in an embodiment of the present
invention, for the equivalent set of independent single stage
multiplier circuits results in a system that performs the same
calculations with substantially higher throughput and sub-
stantially lower power and footprint. Even if the set of
outputs is less than the number of actual multiples used,
there may still be considerable savings in power and space.

Having established a distinct advantage of a unique mass
multiplier in an embodiment of this invention over indepen-
dent multipliers, reordering the sequence of operations can
increase the advantage further.

There is nothing in the mathematics of a neural network
(or other similar image processing) algorithm that requires
any specific sequence of operations. If the same operations
are done in any order, the same correct computation will be
made. The inventor observes that the usual order for soft-
ware executing on a CPU, GPU, or TPU-based design is to
produce all output channels for a given position at the same
time by multiplying the weights by the inputs and summing
them immediately. Producing all output channels for a given
position at the same time by multiplying the weights by the
inputs and summing them immediately minimizes the num-
ber of times the inputs must be read from RAM as well as
limiting the number of times the weights must be read, also
from RAM. It does not eliminate reading the inputs multiple
times because there is no place to retain them when pro-
cessing the next row down other than RAM.

However, if, in an embodiment of this invention, the order
of operations of a kernel or other aperture function defined
to operate on an M by N patch of array inputs, is everted, that
is, effectively turned inside out, then each input value is
utilized only once, and no RAM buffers are required. Instead
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of producing outputs one at a time by reading the inputs
redundantly as the aperture function passes over each row,
this unique operation processes the inputs one at a time only
when initially presented and retains partial sums for all
incomplete outputs. The partial sums may be retained in
hardware shift registers or standard hardware first-in first-
out registers (FIFOs), and the number of registers required
to hold the values retained is proportional to the height of the
kernel and the width of the input rows.

As the function that implements an aperture function can
be decomposed into a series of sub-functions, each of which
operates on the result of the immediately prior sub-function,
the implementation of the kernel may be accomplished by
composing the sub-functions in sequence over time such that
each operates on the data immediately as received and
results in the identical sequence of operations as applying
the kernel in the abstract. We refer to this recomposed
function, including any initialization, as an aperture func-
tion, and the individual steps as sub-functions. An aperture
function, as used herein, refers to any M by N calculation to
be implemented at a plurality of positions on a sliding
window, or patch, of M by N inputs of a larger R by C array
of inputs. An aperture function, as with implementation of a
full CNN kernel, may also include an initialization and
finalization operation. In the case of a CNN the initialization
preloads a bias value into the accumulators and the final-
ization transforms the raw output of the kernel via an
arbitrary activation function.

In this example of this invention, as components of each
new input position are presented, the components at that
position represent the first element of the patch down and to
the right, and simultaneously the last element of the patch up
and to the left and intermediate elements of all other patches
that intersect the current position. This allows a computa-
tional circuit to be developed as an embodiment of this
invention that has a fixed number of elements in process at
all times (with some possible exceptions near the edges of
the input) and produces outputs at the same rate as it accepts
inputs.

Where the guiding algorithm requires evaluation of the
aperture function over a patch that extends past an edge of
the input array, many special cases and issues arise, but they
are not insurmountable. Special case logic may be added
such that the overlapping patch’s partial results are made
compatible with the normal case without affecting overall
throughput.

In embodiments of the invention this everted form of
aperture function operations accepts inputs as a stream and
produces outputs as a stream. Inputs need not be buffered in
RAM because they are each referenced only once. Since the
outputs are also in a stream, they also can be processed by
subsequent layers without RAM buffering, which is a result
attributable to this invention that substantially increases
processing speed over many otherwise necessary read and
write operations to RAM.

In an embodiment of the invention, in place of many
layers sharing a single set of independent multipliers execut-
ing, storing and then reading back the results to process the
next layer in sequence, a pipeline may be produced using
dedicated mass multipliers that processes all layers simul-
taneously, feeding the output stream of each layer into the
input of the next layer without waiting for any layers to be
complete.

A fully implemented pipeline in an embodiment of the
invention thus may reach an effective throughput measured
at two orders of magnitude greater than a conventional
output-centric ordering process and eliminates contention
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for RAM (because it doesn’t use RAM). It is this contention
for RAM that forms a primary bottleneck for GPU and
TPU-based processing.

Latency of such a system in an embodiment of this
invention is reduced to the time from input of last pixel to
output of last result. Since the last pixel of the image, by
definition of the algorithms, must necessarily be the last
datum required to complete all of the final computations for
all layers, the latency of the system is strictly the clocking
rate times the number of distinct clock stages in the pipeline
including the final output.

Using a single dedicated mass multiplier for each input
channel throughout a neural network in an embodiment of
this invention (in place of a limited set of independent
multipliers that must be reused and dynamically assigned)
makes it possible to build a pixel-synchronous pipeline
where all multiplications are executed in parallel because it
only takes a single mass multiplier to process an arbitrary
number of weights applied.

Having described the essential features of the innovation
of mass multipliers, and also advantages of eversion, the
inventor posits specific examples below:

FIG. 1 is a diagram illustrating an embodiment of the
invention wherein each of a plurality of one or more source
channels 1 through N, labeled 101a through 101d has a
dedicated mass multiplier 102a through 102d assigned.
Since each source channel in this example has a dedicated
mass multiplier circuit to create the set of multiples of that
channel’s values, the source channel formats may vary
between signed, unsigned, fixed or floating point in any
precision convenient for the processing algorithm imple-
mented in hardware. Specific outputs of each mass multi-
plier circuit, such as mass multiplier circuit 102¢, may be fed
directly into one or more computation units 103a through
1034 that may perform calculations that require multiples of
any or all of the source channels. Such computation units
may be used to implement independent output channels of a
single algorithm or unrelated algorithms to be computed on
the same source channels. The outputs of the computations
may be forwarded for further processing as shown at 104 as
may be required by the algorithm, or algorithms, imple-
mented in hardware. This situation arises, for example, when
implementing a Neural Network in a Field Programmable
Gate Array (FPGA) where the weight values applied as
multiplicands will not change.

FIG. 2 illustrates an embodiment of the invention wherein
the outputs of each mass multiplier, such as mass multiplier
102a of FIG. 1, are fed through a set of multiplexors 201a
through 2014 into computation units 203a through 2034
such that the multiple selected may be chosen either on
initialization of the system, or dynamically as it operates.
The outputs of the computations may then be forwarded for
further processing at 204 as before. This situation arises
when implementing a Neural Network in an application
specific integrated circuit (ASIC) where the structure of the
computation is committed but the weight values used need
to be alterable.

FIG. 3 illustrates internal structure of mass multiplier
1024 of FIG. 1 and FIG. 2 in one embodiment. This structure
may be common to mass multipliers 1025, 102¢, and 1024,
as well as to other mass multipliers in other embodiments of
the invention. In this structure products 303a through 303/
of source channel multiplicand 101a of A bits by all possible
multipliers of B bits are produced in parallel and delivered
to multiples 304. In this example the A bits of source
multiplicand 1014 are duplicated and shifted up by append-
ing 0 bits to the least significant position and padded by
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prepending O bits to the most significant position such that
a full set of all required shifted values from O to B-1 are
available in form of a vector of A+B bit terms 302a through
302d. These terms may be formed simply by routing circuit
connections and no register or logic circuitry is required. In
a case where the clock period is sufficient to allow a
maximum of B terms of A+B bits to be composed in a single
period, no registers or sub-composition may be required.
Individual products 303a through 303/ of the summed terms
may be registered locally or forwarded for further process-
ing as combinatorial logic. Each product of 1 to 2"B-1 times
a source multiplicand 101a may be formed by adding any or
all of the B corresponding terms 302a through 3024 wher-
ever a 1 bit in each multiplier occurs. The multiple 0 of any
and all sources is a constant of all 0 bits and may be included
in multiples 304 for completeness when using multiplexors
but otherwise requires no circuitry. Any unused products
303a through 303/ may be omitted either by leaving them
out of the circuit specifications, allowing the synthesis tools
to delete them, or by any other method. Unused terms 302a
through 302d may also be omitted but as they do not occupy
logic this is generally without effect. In this fashion, all
required multiples 304 of a source multiplicand 101 may be
formed as a single stage pipeline or as combinatorial logic.

FIG. 4 shows an optimized embodiment wherein a set of
terms 401 is comprised of all required individual terms 302a
through 302e from 0 to B inclusive formed of A+B+1 bits.
This allows for products 402a through 402/ to include
subtraction from a larger term in lieu of addition of smaller
terms and may be used to reduce the overall size of a circuit
which may also increase maximum allowed clock fre-
quency. For example, for any given input a and multiplier
15, 8a+4a+2a+la=15a combines four components while
16a-1a=15a combines only two and may be generally
expected to be more compact and efficient. Each product
4024 through 402/ may be composed of any additions and
subtractions of terms 302a through 302e that yield the
correct result, and each specific variant may be chosen based
on optimal tradeoffs for the specific implementation tech-
nology. For example, a subtraction of two N bit quantities
may require more logic than an addition of two N bit
quantities, but in general an addition of three N bit quantities
will always require more logic than a subtraction of two. The
treatment of required multiples 304 is unaltered by details of
composing individual products 402a through 4021

FIG. 5A illustrates an embodiment of a mass multiplier
wherein the clock period is such that only a single addition
of A+B bit values (or A+B+1 if subtractions are used) is
possible per period. In this case, in order to accommodate
multiples where more than two terms are utilized, it is
necessary to arrange required elements into a multi-stage
pipeline. Terms 401 are formed from each source channel
101 as before but are retained one or more times in pipeline
registers 501a and 5015 for later reference. Pairs 502 of two
terms summed are computed and registered and then pre-
served 503 as necessary. Triples 504 are formed as sums of
pairs 502 and retained terms 501. Quads 505 of term values
are formed as sums of pairs 502. Any and all unused
elements may be omitted and to increase overlap only
descending sequences of addends may be specified. This
ensures that redundant sums, e.g. a+b and b+a, are not both
utilized and retained in the final circuit. Products 506a
through 506/ may utilize any addition or subtraction opera-
tion of any pair of registered sub-compositions that meet
timing constraints. By consistently using the largest element
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available total size and hence power may be reduced but any
combination of operations that yield correct results are
acceptable.

The embodiment of FIG. 5A is sufficient to produce all
required multiples where B=8. For larger multiple sets,
sub-compositions shown may be recombined in further
pipeline stages such that all required multiples 5064 through
506/ for any value of B may be composed from single clock
operations on the extended set of sub-compositions that
includes the previously disclosed retained terms 5015,
retained pairs 503, triples 504, and quads 505 together with
such other sub-compositions as required to form a set of
terms sufficient to form the multiples 506a through 506/ by
single clock operations.

FIG. 5B illustrates an embodiment wherein the multiples
are formed directly by a fixed set of cases without reference
to standard arithmetic operations. For each of the required
multiples the set of output values a*b is enumerated for each
source channel value a. This allows for hardware circuit
synthesis tools to determine an optimal logic circuit 507 to
produce the full set of required multiples. Specification of
the required output values for any given input value is
typically made by enumeration in Verilog ‘case’ or ‘casex’
statements. This is distinct from a lookup table where the
output values are stored and accessed via an index formed
from the inputs because logic gates are used to implement
the minimum subset of operations required to produce the
full set of output values and redundant logic used to produce
related subexpressions will be combined.

Which of methods 5A and 5B is most efficient in terms of
space, frequency and power depends on specific values of A
and B as well as the core efliciency of arithmetic operations
vs arbitrary logic. Choice of which method to use may be
based on direct observation, simulation or other criteria.

FIG. 6 illustrates an embodiment wherein the clock period
is such that sufficient levels of logic allow for composition
by addition and/or subtraction of four elements during each
single clock period. By selecting from a set of sub-compo-
sitions, each product 6054 though 605/ may be produced by
combining no more than four registered elements. As before,
terms are retained in registers 501a and 5015, but triples 601
retained in 602 are composed directly from terms 401 and no
pairs are used. Septets 603 and octets 604 are formed from
triples 601 and retained terms 501a.

The example embodiment of FIG. 6 is sufficient to
produce all required multiples where B=32. For larger
multipliers, sub-compositions shown may be recombined
four at a time in further pipeline stages to produce all
required multiples for any value of B. The sub-compositions
of elements shown are necessary and sufficient to produce all
products where B=32 but other sub-compositions (perhaps
chosen for consistency across different values of B) are
acceptable.

When the set of multipliers is fixed, as is common for
FPGA applications, then even a large, sparse set of multi-
pliers may be efficiently implemented since common ele-
ments are merged and unused elements may be omitted.
When synthesis tools perform this function automatically, an
expression of a circuit may include all possible elements
without explicitly declaring which multiples are used.

If operations on A+B or A+B+1 bit values cannot be
completed in a single clock cycle, a multistage pipeline
adder may be inserted for any single stage composition logic
if extra pipeline registers are inserted as necessary such that
all paths have the same number of clock periods. Pipeline
stage periods may be instances of a single edge to edge clock
transition, or a multicycle clock if throughput constraints
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allow. Neither multiple clock stages per operation nor use of
multicycle clocking requires structural alteration to any
embodiment other than the issues mentioned immediately
above.

An important object of the invention is to provide to the
industry mass multipliers implemented in integrated circuits,
to be used in a variety of applications. Toward this end the
inventor provides in one embodiment a mass multiplier
implemented as an integrated circuit, the integrated circuit
having a port receiving a stream of discrete values, and
circuitry multiplying each value as received at the port by a
plurality of weight values simultaneously, and an output
channel providing products of the mass multiplier as pro-
duced.

In one version the discrete values received may be
unsigned binary values of fixed width, the weight values
may be unsigned binary of fixed width of two or more bits,
and each multiple may be composed as a summation of
bit-shifted duplicates of the input. In another version the set
of shifted duplicates may be increased to allow the use of
subtraction operations to reduce or otherwise optimize the
circuit. Unused outputs of the set may be omitted either
explicitly or implicitly.

In one embodiment the set of output products may be
produced by combinatorial logic. In another the set of output
products may be produced by a single stage pipeline, using
single or multiple clock cycles. In another the set of output
multiples may be produced by a multi-stage pipeline by
combining no more than two addends per stage. Unused
elements of the intermediate sub-compositions may be
eliminated from the circuit either explicitly or implicitly.

In one embodiment the set of output products may be
produced by a multi-stage pipeline by combining three or
more addends per stage and the sub-compositions may be
adjusted accordingly. Unused elements of the intermediate
sub-compositions may be eliminated from the circuit either
explicitly or implicitly.

Another object of the invention is to provide mass mul-
tiplication in integrated circuits to implement substantially
improved convolutional neural networks in the ongoing
evolution of deep learning and artificial intelligence. The
inventor in this effort provides a first convolutional neural
network (CNN) node, implemented as an integrated circuit,
which has a first input channel defined as a stream of discrete
values of a first component of an element of an array.

In this description the inventor intends the nomenclature
of an element of an array to mean an element that may have
a single component, or multiple components. A good
example is an image, which may have pixels as elements,
and each pixel may have a single component, if the image
is monochrome, or three color values in one example, if the
image is in RGB color. Each color value in this example is
a component of the element, which is a pixel.

Continuing with the description above, of a first convo-
lutional neural network (CNN) node, implemented as an
integrated circuit, with a first input channel defined as a
stream of discrete values of a first component of an element
of an array, there is further in this CNN a first mass
multiplier circuit multiplying the discrete values of the first
component, as received, by a plurality of weight values
simultaneously. An output channel provides an output
stream of discrete values.

In one embodiment of the CNN node the first output
stream is formed from products of the first mass multiplier
circuit in some circumstances by combining products with
constants and in some circumstances by applying an acti-
vation function.
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In another embodiment the CNN node further comprises
a second input channel defined as a stream of discrete values
of a second component of the element of the array, and a
second mass multiplier circuit multiplying the discrete val-
ues of the second component, as received, by a plurality of
weight values simultaneously. In another embodiment there
may be a third input channel defined as a stream of discrete
values of a third component of the element of the array, and
a third mass multiplier circuit multiplying the discrete values
of the third component, as received, by a plurality of weight
values simultaneously.

Having described a CNN node having one, two or three
input component streams and dedicated mass multipliers,
the inventor further provides a convolutional neural network
(CNN) that has a first convolutional neural network (CNN)
node, implemented as an integrated circuit, comprising input
channels defined as streams of discrete values of compo-
nents of elements of an array, mass multiplier circuits
dedicated to individual input channels, multiplying the dis-
crete values of components, as received, by a plurality of
weight values simultaneously, and an output channel pro-
viding an output stream of discrete values, and a second
CNN node having input at least partially dependent on
output of the first node. This CNN may have successive
nodes and may operate as a deep neural network (DNN).
There is no requirement that successive nodes after the first
node be CNN nodes.

Pipelined Aperture Function Operations

Referring now back to earlier description in this specifi-
cation, discussing order of operations in processing a CNN
or other similarly chosen aperture function that passes an
array of computation sub-functions over an array of inputs
to produce a net result, specific description is now provided
of an everted form of aperture function operations in an
embodiment of the present invention that accepts inputs as
a stream and produces outputs as a stream. In this embodi-
ment of the invention inputs are not, and need not be,
buffered in RAM because each input is referenced only
once. Outputs are also produced in a stream, so the output
stream may be processed by a subsequent layer without
RAM buffering. The inventor believes this innovation sub-
stantially increases processing speed over many otherwise
necessary read and write operations to RAM in other sys-
tems of processing.

Apparatus and a method are provided in an embodiment
of the invention wherein action of passing a two-dimen-
sional aperture function over a two-dimensional array is
accomplished by acting on an incoming stream of inputs
such that all inputs are processed immediately and partially
completed computations are retained until such time as all
required inputs are received and processed, and the output is
produced in a conformant stream with typically identical or
lower data rates to the input stream. All inputs are accepted
and processed at the rate provided and are not required to be
stored or accessed in any order but in the order presented. If
the application of the aperture function is defined such that
more outputs are produced than inputs, the circuit can still
operate at incoming data speed by selecting a processing
clock rate at a sufficient increase such that the system never
fails to accept and process an input when presented.

The conventional way to implement a convolution of a
kernel or more general aperture function against a larger
input array is to gather the required input patch, apply the
function to the inputs and output the result. As the aperture
is passed over the input array, each succeeding patch will
overlap with the one just processed so some inputs may be
retained and reused. Various mechanisms such as FIFOs
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may be used to avoid reading the inputs redundantly from
source storage as the patch advances to each new row, but
the source data will still be applied to each position in the
kernel in turn to produce each output whose input patch
overlaps with each specific data input position.

If there are many output channels and many independent
aperture functions to be computed, a mass multiplier may be
used to provide products of the patch of input values under
consideration to all of the aperture functions in parallel. But
with this arrangement and order of operations, each position
of source data will require a set of products for each position
in the kernel as it is combined into the various output
positions that overlap.

A mechanism of the instant invention is to evert, that is,
to turn inside out, the order of operations for specific
advantage of using a single mass multiplier per input chan-
nel applied to a given input value only once. Rather than
retaining or rereading source values for later use in the form
of computing later products, the process in an embodiment
of the instant invention computes all required products of
each input when presented and retains a running total for
each element of the aperture function that is complete up to
the point in which the current input appears.

Any aperture function that can be mathematically decom-
posed into a series of sub-functions that are applied in
sequence can be implemented in this fashion. Since CNN
kernels are simply a sequence of additions of the products of
weights times inputs, and the order of the operations is
compatible with the order of the source inputs taken left to
right, top to bottom, the mechanism can easily be applied.

In an embodiment of the invention an array of composi-
tors is implemented on an IC, corresponding to the sub-
functional elements of the aperture function, each keeping a
running total of the value of the aperture function as it
progresses over the input stream. The final compositor in the
array outputs the complete value of the function, and all
other compositors output a partial value of the function.

In the simple case of application of a 3 by 3 kernel, the
output of the upper left compositor reflects the first element
of the kernel applied to current input plus any initialization
constant, the output of upper middle compositor reflects the
first two steps, and the output of the upper right compositor
reflects the first three steps. The output of the upper right
compositor needs to be delayed until it can be used again by
the next row. The next row of compositors continues the
pattern of accepting a partially completed function value
adding the contribution of each new input and passing it
forward. The last row of compositors completes the last
steps of the function and outputs the completed value for any
further processing.

Noting that the progression of partial values of the func-
tion between compositors is generally from left to right in a
first row, then left to right in succeeding rows, to finally a last
compositor in the last row, one may consider the flow of
partial values is a stream and refer to compositors and flow
as upstream or downstream.

At all times, each compositor maintains the partial sum of
the aperture function up to and including the current source
input. Each compositor is always working on a different
patch position of the output, specifically that patch where the
current input appears in the compositors’ relative position in
the aperture sub-function array.
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If a 3x3 kernel W is expressed as a function of inputs A
as

aiy arz as Wil Wiz w3

A=|ay G axp|A=|wy wp wy

asy dsz a4sz w31 Wi Wiz

u=k+aywy +anpwiz +aiwis +

a1 w21 + GpWy + a3W2s + A3 Ws) + asxwsz + a3z wss

the function implementing the kernel can be decomposed
into equivalent sub-functions.

vola)=k+aw,,

vi(t,@)=t+aw >
Vo(t,@)=t+aw 3
va(t,@)=t+aws
vy(t,@)=t+aw,,
vs(t,a)=t+aw,,
ve(t,a)=t+aws |
vo(t,a)=t+aws,
vg(t,a)=t+aws;

u=vg(V7(Ve(Vs(Va(v3(va(v1(vo(@11),212),213),021):922),
@3),431),332),433)

u=(((((((k+ay Wy )+a 1 wio)+a 3w 3)+az W)+
AxaWap)+a3Wa3 )z W3 1) +a33W30)+aA33W33

U=k W1 1+ 15W10+A 1 3W 13+ | Wa A Woo+
Ay3Waztas W3 +a3Wap+azsWaz=u(d, W)
The circuitry required to compute those sub-functions is
then arranged in a corresponding array of compositors

Vo Vi V2
V3 V4 Vs

Ve V7 Vg

and the partially completed sums are maintained as the
output value of the compositors

k+arw, k+a;_ywy + k+a;_owy +

aiwy2 Gi—iwiz +aiwys

k+aiswi +aawip+ k+aiawy +...+ k+ai_swi +...+

ai-1w13 +aiwzy ai-1w21 +axn Gi—1 W22 +aiwy3

k+a;i_ewi + ...+ k+ai_ 7wy +...+ k+aigwy +...+

Qi1 W3 +a;wsy ai-1w31 + ;w3 Gi-1 W32 +a;ws3

Where g, is the current value from the input stream and a,_,
through a, ¢ in each case are the previously processed inputs
for the specific patch where a, appears in the position relative
to the output of each individual compositor. Each composi-
tor will compute the value of the aperture function up to and
including the position that the compositor corresponds to in
the aperture array. Each compositor takes the current value
of the input stream and combines it with previous values to
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produce a different partial sum corresponding to the partially
processed patch in the input array where the current input
value appears in the relative position of that patch corre-
sponding to the position of each compositor in the aperture
function.

In this way the partial values of the aperture function,
computed in the standard order and precision, will be
maintained over time on the input stream until the completed
values are ready to output.

While this technique is quite straightforward within the
interior of the input array, complications arise when applied
to patches that overlap the edges of the input array as the
aperture function is defined differently when all inputs are
not available. In the case of a CNN kernel, the additional
operations are dropped, equivalent to using zeros as inputs.
The instant invention is concerned with maintaining a steady
flow of partial sums through the compositors while process-
ing those exceptions, as described below.

FIG. 7 is a diagram illustrating structure and connectivity
in an embodiment of the invention receiving an input stream,
preprocessing the input stream, and feeding results through
a unique digital device to produce an output stream.

Input channel set 701 and associated control signals 702
are used by common circuitry 703 to produce any and all
products of the input channel set with weights for subse-
quent sub-functions. The source channel products are then
distributed to a bank of sub-function calculation circuits
704a, 7045, and 704c, each of which produces a single
channel of an output channel set 705. Any number of
independent output channels may be supported by the com-
mon circuitry 703.

FIG. 8A is a diagram illustrating mass multipliers 801a,
8015, and 801¢, in common circuitry 703 of FIG. 7, that take
each channel of input channel set 701 and produce either a
sparse or a complete set of multiples as required by the
defined sub-functions. It is to be noted that this illustration
assumes three channels in an input channel set, as may be the
case for such as red, green and blue pixel values in process-
ing RGB images. In other embodiments there may be one,
two, or more than three channels. Any or all of products 802
(multiples of source input array values constructed by the
mass multipliers) may be made available to compositors as
shown in FIGS. 9A, 9B, 9C described in enabling detail
below. Compositors are instances of hardwired circuitry in
the unique device of the invention that perform sub-func-
tions on the source channel products produced by the mass
multipliers of FIG. 8A.

FIG. 8B is a diagram illustrating structure of synchroni-
zation circuitry that provides both normal and exception
handling signals to all compositors of all output channels.

Control circuitry 803 synchronizes all output and control
counters to the source input stream and implements setting
the output and control counters to an initial state whenever
RST or INIT is asserted.

A colSrc counter 805 in this example counts out the inner
dimension of the array column by column across a row and
advances as each set of source channel products is pro-
cessed. At the end of each row the colSrc counter returns, in
this example, to the leftmost position (0) and a rowSrc
counter 804 is advanced by one. At the end of the source
array stream, the rowSrc and colSrc counters are returned to
the initial state and are prepared to receive a new array of
inputs.

In this example a colDst counter 807 and rowDst counter
806 together act in a similar manner as the counters for all
output channels. The colDst and rowDst counters are
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enabled by an output enable signal (DSTEN) 813 and
determine when a post processing enable signal (POSTEN)
812 is asserted.

It is to be noted that the system depicted in this example
produces a single output of an aperture function but will
normally be used to produce a stream set of channel outputs
compatible with the dimensions of the source input stream.
Each independent output channel will share at least some of
computation circuitry via the mass multipliers and common
control logic.

An output-enable (DSTEN) signal 813 controls when a
finalization function accepts and processes results from the
compositors. While the first several rows are accepted from
the source input array, no valid results are presented to the
finalization function (see FIG. 9C). Output enable signal 813
(DSTEN) is asserted when either the rowDst and colDst
counters indicate that valid results are available or alterna-
tively when processing delayed truncated results. POSTEN
signal 812 is asserted continuously or periodically to con-
form to the timing of the SRCEN signal 801. These signals
are required to sequence final outputs of all truncated
compositors when processing the last row of the source
input stream array. Each row of compositors from |M/2] to
M-2 will produce final truncated outputs simultaneously
with the last full outputs which must be retained and emitted
sequentially after all full patch outputs in order to conform
to the array stream format.

In this example the POSTEN and DSTEN signals, and
colDst, and rowDst counter values are independent of the
SRCEN signal and colSrc and rowSrc counter values and
continue to process delayed results until all delayed results
have been finalized and sent to the output stream. The
system may accept new inputs while the previous outputs
are completed, thus allowing the system to process multiple
frames of the source input stream without pausing between
the frames. While source stream data has not reached the end
of the array, POSTEN is not asserted, and final results are
taken from the compositors. Immediately after reaching the
end of the source array, the POSTEN signal is asserted for
each additional output and final results are taken from
truncated delay lines 909, 910a, and 9105 as shown in FIG.
9C described below, until the rowDst counter reaches the
full number of output rows, whereupon rowDst and colDst
are reset to initial conditions in preparation for a next frame
of data.

A first row signal 808 (ROWEFST) is asserted when the
rowSrc counter indicates that the source data set from the
stream represents the first row of the array.

A last row signal 809 (ROWLST) is asserted when the
rowSrc counter indicates that the source data set from the
stream represents the last row of the array.

A first column signal 810 (COLFST) is asserted when the
colSrc counter indicates that the source data set from the
stream represents the first column of each row of the array.

A last column signal 811 (COLLST) is asserted when the
colSrc counter indicates that the source data set from the
stream represents the last column of each row of the array.

FIGS. 9A, 9B and 9C illustrate the unique device men-
tioned above in a general case wherein M by N sub-function
elements of an aperture function are applied to each over-
lapping M by N patch of an array of R by C inputs, including
those that overlap the edges, the inputs presented as a stream
of associated components at regular or irregular time inter-
vals to produce a corresponding stream of R by C outputs
wherein each output is the aggregate effect of the M by N
functional elements applied to the input patch as specified by
rules of an aperture function. The functional elements
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applied to each position in the array is in this device a
hardwired compositor for each of the M by N sub-functions,
as shown in the composite of FIGS. 9A, 9B and 9C.

The effect of the circuit is to compute the recomposed
value of an aperture function at each position of the array of
R by C inputs with an identical sequence of operations as
would be used to compute an aperture function over each
patch individually. If any positions are not desired in the
output stream, circuitry can be added to omit them to
produced tiled or spaced outputs rather than fully overlap-
ping.

Source channel products 802 and source control signals
814 are made available to each of compositors 901, 902a,
9025, 902¢, 9034, 9035, 903¢, 904, 9054, 9055, 905¢, 906,
907a, 907b, and 907¢. Source control signals are also
connected to delays 908a, 9085, 908¢, 9084, 908e, and 908/
Output channel control and counters 815 are made available
to delays 909, 910a, and 9105, as well as finalization
function 911. Additional pipeline stages may be inserted by
hand or by automated tools to make circuit routing feasible
for a given clock frequency if and only if the order of
operations is not altered. The timing control and counter
signals are available to all elements of the circuit and are not
individually shown.

Each compositor has a dedicated direct connection to
either specific input products, or alternatively to a program-
mable multiplexor that selects one of the products for each
input value in the set and is preconfigured before execution
of the circuit. Each dedicated connection is a parallel path-
way with a plurality of wires sufficient to carry the bits
expressing the products required in a single input interval.
The use of an optional preconfigured multiplexor to select
which product for each set element is sent to each composi-
tor allows for upgrade of the weight values in the field. A
fixed connection is used when the weights are not to be
upgraded and remains fixed for the lifetime of the device. As
the selection of weights does not change during operation,
the choice of fixed or variable product selection does not
affect the operation of the circuits.

Each compositor receives the set of products correspond-
ing to the weights of the sub-function, one per input channel,
from the mass multiplier and performs the sub-function
computation, typically simply adding them all together, to
form the contribution of this compositor to the value of the
overall aperture function. Each compositor, except those
corresponding to the left column of the aperture function,
also receives partially completed results from the composi-
tor to the immediate left. Each compositor, except those
corresponding to the top row of the aperture function, may
also receive delayed partially completed results from the
compositor on the row above. Each compositor has, at most,
one connection from the left, and one delayed connection
from above, each connection of which is a parallel pathway
with a plurality of conductors sufficient to carry the bits
expressing the partially completed results as input to the
compositor. As per the definition of the subfunction with
respect to the position of the current input patch relative to
the edges of the input array, each compositor performs one
of three operations: combination of this compositor’s partial
result with initialization values, if any, or combination of this
compositor’s partial result with partial results from the
compositor to the left, or combination of this compositor’s
partial result with delayed partial results. The amended
result is placed into an output register of a plurality of bits
sufficient to contain the result and make that available in the
succeeding input interval to the compositor to the right
and/or the delay and finalization circuitry. This amended
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result may be either a partial result, a complete result, or a
truncated result, depending on the position of the compositor
in the aperture function and the state of the input stream
position.

Compositor (0, 0) is unique in that no compositors exist
to the left or above in the aperture function and so always
initializes the computation with each input set received.

Compositor (M-1, N-1) is unique in that the result pro-
duced is always a final result but is structurally identical to
all other compositors 9034, 9035, or 903c.

Some compositors’ outputs are tapped for delay or post
processing in which case the width of the pathway through
such delay or post processing is sufficient to transport the
bits expressing the partial, truncated, or completed result.
Some compositor’s outputs are only used by the compositor
to the right. The computation internal to the compositor and
output data format does not require alteration depending on
the use of the output.

The finalization circuit takes the result from the several
possible sources and multiplexes them to select which to
process on any interval. After applying the finalization
function, if any, the width of the final output may be reduced
and will form the output stream of the instant embodiment
which may either be the input stream of the next, the final
outputs of the system containing the invention or may be
used in further processing.

Data paths on the unique device in embodiments of the
invention are indicated in FIGS. 9A, 9B and 9C by bold lines
with direction indicated by arrowheads, and an ellipsis
indicates where the last column or row in the range is
repeated in its entirety. Data path (a) from source channel
products 802 is a set of parallel conductive pathways, one
pathway dedicated to each product of an input component,
each product being the value of the input component mul-
tiplied by one of the plurality of weight values of the
aperture function. It should be apparent that a 5 by 5 aperture
function has 25 weight values for each input component. For
the circumstance of an aperture function for an R by C input
array of R, G and B color pixels, then, there are 75 weight
values. Line (a) thusly, in this circumstance has 75 parallel
pathways, each pathway a set of parallel conductors of a
width to accommodate the desired number of bits for
accuracy. Line (a) is termed in the art a set of point-to-point
connections, as opposed to a bus.

Data paths (b) in FIGS. 9A, B and C are not extensions of
line (a), but dedicated connections to a specific subset of the
pathways in line (a). Lines (b) are not marked in every
instance in FIGS. 9A, B and C, but every connection from
line (a) directly to an individual one of the compositors is a
dedicated line (b). The dedication is that each compositor is
connected to that subset of pathways that carry the products
of each input component and weight values required by that
compositor.

Data paths (c) in FIGS. 9A, B and C are point-to-point
paths between output registers in each compositor and a next
compositor to the right. These are dedicated pathways of the
accuracy width that carry typically a partial sum, as is
described in enabling detail elsewhere in the specification.
Not every path (c) is marked in the figures, but it may be
assumed that in this example that every direct connection
from one compositor to another is a pathway (c). Note that
there are instances where output pathways (c) branch to
alternative circuitry.

Another distinct data path in an embodiment of the
invention is marked (d) in FIGS. 9A, B and C. These are
dedicated data paths from delay circuits such as circuits
908A thru 908/, either back to compositors down a row and
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to the left, or directly to other delay circuits. The delay
circuits are fashioned to accept partial sums at a right end of
a row of compositors, to delay passing on the partial sums
for a specific number of source intervals, and then to pass
those partial sums to another compositor and/or other pro-
cessing at a proper time. The overall functionality is
described in enabling detail elsewhere in this specification.
Pathways (d) between delay circuitry are similarly dedicated
pathways for typically partial sums to be passed at certain
source intervals.

If either of M or N is reduced such that no last rows or
columns of a range are required, the ending elements are
omitted and the implementation of the first row or column in
the range is retained. In a degenerate case where one or both
of M or N is reduced to 2, the first and last rows or columns
are retained, and the intermediate rows or columns are
omitted. In a degenerate case where one of M or N is
reduced to 1, the implementations of first and last composi-
tor are combined, and special initialization is not required. In
the specific case where both M and N are 1, eversion of the
aperture function is not required but the usage of the mass
multiplier still affords distinct advantage.

Source channel products 802 may be any set of binary
values presented contemporaneously associated with a spe-
cific position of the R by C array and in some predefined
sequence. The source channels of the input stream can be
any combination of integer or fractional values in any format
of whatever nature is defined for the inputs of an aperture
function. One example is pixel values from one or more
video frames and/or any other sensor values scaled to match
the array size R by C as well as feature component values
produced as output of CNN layers. It is emphasized that
each node that embodies this invention may accept output
from other nodes in addition to or in place of primary source
inputs. While it is common for the first node, or nodes, in an
embodiment of the invention to accept image pixels as the
primary input of the system, there is no restriction on the
nature of the data processed if it can be formatted into a
stream representing an R by C array.

In one embodiment of the invention, source stream ele-
ment sets may be presented in row-first order with each
succeeding column presented in strictly ascending order. In
some embodiments of the invention the rows and columns
need not correspond to horizontal or vertical axes, but may
be arbitrary, as in scanning up or down the columns and right
to left. Rows R and columns C here simply refer to the major
and minor axes of the stream format. The circuitry need not
be adjusted for input signals that produce the input stream in
orientations other than standard video left-to-right, top-to-
bottom ordering. The orientation of the aperture sub-func-
tions can be made to conform to produce identical outputs
for each input array position.

In this example source inputs, which are products of
source values and weights as required by an aperture func-
tion, are presented by a signal (SRCEN See FIG. 8B)
indicating when each new set of elements is valid. Input may
be paused and resumed at any time. In some instances, a
minimum interval between inputs may be defined, and the
circuit may use multicycle or higher speed clocks to reduce
size, power or otherwise take advantage and the output
channel set may use the same minimum interval.

Common control and synchronization circuitry 803 (FIG.
8B) provides counters and control signals that describe the
current input position in the R by C array. The counters may
continue running for extra rows and columns after the final
input to assist a finalization function 911 (FIG. 9C) to output
accumulated outputs generated in excess of input columns
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by the last row of input. (See FIGS. 12, 13, and 14 and
description below) Control signals are available to all other
elements and are not shown in FIGS. 9A, 9B and 9C.

Compositor circuits 901, 902a, 9025, 902¢, 903a, 9035,
903c, 904, 9054, 9055, 905¢, 906, 907a, 9075, and 907c
each compute that part of the aperture function assigned to
their positions in the M by N function. All compositors
operate on the same source channel set and on the row and
column counter states as provided by control 803. Details of
the data handling of the aperture function are described
further below with reference to additional figures.

As source input sets are received from the input stream,
partially completed computations of the aperture function as
applied to all patches that overlap with the current position
in the input stream are passed from left to right and top to
bottom within the M by N array of compositors. This
operation accumulates the full computation of the aperture
function over time, and outputs the correct implementation
of the aperture function over each patch of the input array
producing the same result through the identical order of
operations as would be the case if the aperture function were
implemented by reading the input values directly from the
array. Replacement of random access to the array with
stream access is an important feature of the invention and
eliminates the requirement for redundant access to a ran-
dom-access memory.

At the right-side columns |N/2| through N-1 of the
compositors, exclusive of the bottom row, partial outputs are
passed to delay stages 908a, 9085, 908c, 908d, 908¢, and
908/ where they are held for the number of input intervals
needed, such that they can be utilized in further computa-
tions of the same logical patch position when inputs are
received corresponding to lower rows of the patch.

When processing the last column C-1 of each input row,
all compositors from columns |[N/2] to N-1 and rows 0 to
M-2 also represent the last computation for that row of the
patches that include the last column of the input array, and
their values are forwarded to delay stages 908a, 9085, 908c¢,
908d, 908¢, and 908/ and require special processing to be
inserted in the sequence, such that they will be available at
the correct time to continue computing the aperture function
when subsequent input rows are received. See FIG. 11 and
associated description.

In this example compositor 903¢ at the (M-1, N-1)
position always produces a completed accumulation of the
M by N sub-function elements but is otherwise indistin-
guishable from other compositors of that configuration 903c.
As above, when processing the last column C-1 of each
input row, all compositors from columns |[N/2] to N-1 on
row M-1 also represent completed but truncated accumula-
tions of the aperture function elements and are sent directly
to finalization function 911 for processing to be inserted into
the output stream.

In this example while processing the last row R-1 of
inputs, compositors in column N-1 from row |[M/2| to M-1
also represent completed but truncated accumulations of the
sub-function element computations and are sent to truncated
outputs delay lines 909, 910a, and 9105 and retained until
the primary outputs from row M-1 have been finalized at
911. With control signals as shown in FIG. 8B, additional
M-|M/2| rows of truncated outputs are transferred from
delay lines 909, 910a, and 9105 and finalized 911, and
ultimately provided at any required timing interval to the
output stream sink 705.

FIG. 15 is a diagram illustrating the specific case of
pipelined operations in an embodiment of the invention that
implements a 5 by 5 convolution node.
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Source channel products 802 and source control signals
(not shown here) are made available to each of compositors
901, 902a, 9025, 903a, 9035, 904, 9054, 90556, 906, 9074,
and 907b. Source control signals are also connected to
delays 908a, 9085, 908¢, and 9084. Output channel control
and counters are made available to delays 909, 910a, as well
as finalization 911. Additional pipeline stages may be
inserted by hand or by automated tools to make circuit
routing feasible for a given clock frequency if and only if the
order of operations is not altered. The timing control and
counter signals are available to all elements of the circuit and
are not individually shown.

As each set of source channel products is presented in
turn, each compositor selects the appropriate product to
compute the sub-function that corresponds to the position in
the aperture function. Each 5 by 5 patch that intersects with
the current position in the input array is amended to include
the computation based on the products of that position. The
net effect is that the single source stream of inputs is
transformed into a parallel set of 5 by 5 streams of partial
computations that are passed between the compositors until
each time that all operations on a patch are complete, which
normally occurs in compositor (4, 4) and sometimes others
when processing the right or lower edges of the input array.

Note that only the width of the input array affects the size
of the delay elements as each must delay partial results for
the number of source input intervals that correspond to
receiving an input of one column and the input at the same
column on the next row.

FIG. 16 illustrates a 4x4 embodiment of the IC of the
invention. It is known that kernels may have odd numbers of
sub-functions in a row or column, or even numbers. This
even version is degenerate in the sense that element 910* as
shown in the general case in FIG. 9C, and in FIG. 15 for the
specific case of a 5x5 aperture function (an odd number in
row and column) does not occur at all because the extra lines
of output processing are omitted.

Odd sizes of a kernel, in both directions, are symmetrical
around a center, but with even sizes the center is offset. The
IC in embodiments of the invention places the center for
even sizes to the right of and below the natural division at
position (|M/2], [N/2]). In an alternative embodiment of the
invention the circuit may be modified to position the center
above and left of the natural division.

Other than these comments, the operation of the specific
IC of FIG. 16 is as described for the other versions
described.

FIG. 10A is a diagram illustrating internal structure and
operation of compositors 905a, 90556 and 905¢ of FIGS. 9A
and 9B, or FIG. 15 in an embodiment of the invention. The
source input set of stream values in channel set 1001, which
may be singular, or a mix of data types as required by the
aperture function, is used to compute the contribution of
each individual compositor by circuitry 1004.

Circuitry 1005 computes the initial value of the sub-
function utilizing the output of 1004. Circuitry 1006 com-
putes the ongoing partial value of the sub-function utilizing
the output of 1004 and the partial value previously computed
by the compositor immediately to the left 1002. Circuitry
1007 computes the ongoing partial value of the sub-function
utilizing the output of 1004 and the partial value previously
computed and delayed from one of 908a, 9085, 908¢, 9084,
908¢, and 908/ on the compositor row immediately above
1003.

Operation of circuitry 1005, 1006, and 1007 may be
contemporaneous (in the same clock cycle) with the opera-
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tion of circuitry 1004 using the shared output thereof or may
be implemented by a series of pipeline stages synchronized
by the same clock.

A multiplexor 1008 selects which variant of partial result
is forwarded as the partial value of the sub-function as the
output of compositor 1009. If COLFST 811 is not asserted
then the output of 1006 is selected, otherwise if ROWFST
808 is not asserted then the output of 1007 is selected,
otherwise the output of 1005 is selected.

This conditional processing is a natural consequence of
allowing the M by N aperture function to extend over the
edges of the source input stream representing the R by C
array of value sets. A single position on the leftmost edge or
uppermost edge will be the first computable element of the
aperture function for the several patches that abut or overlap
those edges. As such, it is required that each and every
compositor that is in the first computable position of an
overlapping patch be initialized with the base value of the
aperture function. Furthermore, each and every compositor
that is in the first computable position of a subsequent row
of the patch must be combined with the prior value of the
partial value of the same patch computed from the imme-
diately previous row. In this fashion, the correct computation
of all patches that overlap, abut, or are interior to the
uppermost and left most edges is ensured using a single
circuit.

In FIGS. 10B through 10G, all elements introduced in
FIG. 10A and using the same element number are function-
ally identical to those described with reference to FIG. 10A.

FIG. 10B is a diagram illustrating internal structure and
operation of compositors 902a, 9025 and 902¢ of FIGS. 9A
and 9B, or FIG. 15 in an embodiment of the invention. The
source input set of stream values 1001 is used to by circuitry
1004 to compute the compositor’s contribution to the aper-
ture function.

Circuitry 1005 computes the initial value of the sub-
function utilizing the output of 1004 and circuitry 1006
computes the ongoing partial value of the sub-function
utilizing the output of 1004 and the partial value previously
computed by the compositor immediately to the left 1002.

Multiplexor 1010 selects which variant of partial result is
forwarded as the partial value of the sub-function as the
output of the compositor 1009. If COLFST 811 is not
asserted then the output of 1006 is selected, otherwise the
output of 1005 is selected.

FIG. 10C is a diagram illustrating internal structure and
operation of compositors 904 of FIG. 9A or FIG. 15 in an
embodiment of the invention. The source input set of stream
values 1001 is used by circuitry 1004 to compute the
contribution of each individual compositor.

Circuitry 1005 computes the initial value of the sub-
function utilizing the output of 1004 and circuitry 1007
computes the ongoing partial value of the sub-function
utilizing the output of 1004 and the partial value previously
computed and delayed from one of 908a, 9085, 908¢, 9084,
908e, and 908/ on the compositor row immediately above
1003.

Multiplexor 1011 selects which variant of partial result is
forwarded as the partial value of the sub-function as the
output of the compositor 1009. If ROWFST 808 is not
asserted then the output of 1007 is selected, otherwise the
output of 1005 is selected.

FIG. 10D is a diagram illustrating internal structure and
operation of compositor 901 of FIG. 9A or FIG. 15 in an
embodiment of the invention. The source input set of stream
values 1001 is used by circuitry 1004 to compute the
contribution of each individual compositor.
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Circuitry 1005 computes the initial value of the sub-
function utilizing the output of 1004 which is forwarded as
the partial value of the sub-function as the output of the
compositor 1009.

Cell 901 (FIG. 9A, FIG. 15) is always the first value in
any full or truncated patch where utilized and thus always
produces an initialization value for the patch.

FIG. 10E is a diagram illustrating internal structure and
operation of compositors 903a, 9035 and 903¢ of FIGS. 9B
and 9C or FIG. 15 in an embodiment of the invention. The
source input set of stream values 1001 is used by circuitry
1004 to compute the contribution of each individual com-
positor.

Circuitry 1006 computes the ongoing partial value of the
sub-function utilizing the output of circuitry 1004 and the
partial value previously computed by the compositor imme-
diately to the left 1002 which is forwarded as the partial
value of the sub-function as the output of the compositor
1009.

FIG. 10F is a diagram illustrating internal structure and
operation of compositors 907a, 9075 and 907¢ of FIGS. 9A
and 9B or FIG. 15 in an embodiment of the invention. The
source input set of stream values 1001 is used to compute the
contribution of each individual compositor 1004.

Circuitry 1006 computes the ongoing partial value of the
sub-function utilizing the output of circuitry 1004 and the
partial value previously computed by the compositor imme-
diately to the left 1002. Circuitry 1007 computes the ongo-
ing partial value of the sub-function utilizing the output of
1004 and the partial value previously computed and delayed
from one of 908a, 9085, 908¢, 9084, 908¢, and 908/ on the
compositor row immediately above 1003.

Multiplexor 1012 selects which variant of partial result is
forwarded as the partial value of the sub-function as the
output of the compositor 1009. If COLFST 811 is not
asserted then the output of 1006 is selected, otherwise the
output of 1007 is selected.

FIG. 10G is a diagram illustrating internal structure and
operation of compositors 906 of FIG. 9A or FIG. 15 in an
embodiment of the invention. The source input set of stream
values 1001 is used by circuitry 1004 to compute the
contribution of each individual compositor.

Circuitry 1007 computes the ongoing partial value of the
sub-function utilizing the output of circuitry 1004 and the
partial value previously computed and delayed from one of
908a, 908b, 908¢, 9084, 908¢, and 908/ on the compositor
row immediately above at 1003. The output of circuitry
1007 is forwarded as the partial value of the sub-function as
the output of the compositor 1009.

FIG. 11 is a diagram illustrating internal structure and
operation of intra row delay lines 908a, 9085, 908¢, 9084,
908¢, and 908/ (FIG. 9C). The delay lines are used to retain
partially computed results from each row of compositors to
be used in the next row.

When COLLST is asserted the current position of the
source input stream is at the rightmost edge and the outputs
of compositors of the rows [N/2] (1101) through N-2 (1102)
are retained for future reference by registers 1104 through
1105 respectively.

If the current position of the source input stream, colSrc,
is less than [N/2], multiplexor 1106 selects from the retained
values in reverse order from right to left as defined by the
index calculation (N-2)-colSrc, otherwise it selects the cur-
rent value from the last compositor of row m (1103).

Note that when the source input stream column position
is less than |N/2], the rightmost compositor of the row will
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not contain valid data which makes these time slots available
for inserting the retained data.

The partial outputs selected by multiplexor 1106 are fed
into a first-in first out (FIFO) circuit 1107 with C-N posi-
tions, which is configured such that source input stream
position is processed such that exactly one value is inserted,
and one value is extracted in the same order as inserted.
Since the partially completed results from one position will
not be required until the source input stream returns to the
same patch position on the next row, this effects a delay such
that the partial results computed by one row will be pre-
sented to the next row precisely when needed.

The partial outputs selected by multiplexor 1106 also feed
the same values (1114) into final results delay lines 909,
9104 and 9105.

The partial outputs extracted from FIFO 1107 are routed
by at 1108 both to the leftmost compositor on the next row
(1111) and to a series of parallel access registers 1109
through 1110 which further delay the partial outputs by one
source input stream interval as data is passed through the
register chain.

When the current position of the source input stream is at
the leftmost edge, the FIFO directs output data at 1108 and
delayed results 1109 through 1110 are made available to the
cells of the next row at 1111, 1112 through 1113 respectively.

It is noted that the extra values from the right side of the
source input array stream inserted by multiplexor 1106 into
FIFO 1107 are only accessed via path 1111 when the source
input array stream position is near the right edge while the
additional parallel paths 1112 through 1113 are only used
when the source input array stream is at the leftmost position
to access data that was inserted normally from path 1103.
The apparent similarities in structure and requirements
between right edge processing and left edge processing is a
natural consequence of the symmetry of the overlap of the
sub-function with the right and left edges of the source input
stream array. When the value for N is an even number, the
number of extra cells processed to support right and left
edges is not the same.

FIG. 12 is a diagram illustrating internal structure and
operation of the final truncated results delay line 909 (FIG.
90).

When processing the last row of the source input stream
array, the partial results from auxiliary output 1201 of intra
row delay line 9084 are considered to be the final results of
the final row of truncated patches and are retained in a FIFO
1202 whose number of elements C is equal to the width of
the source input stream array.

Immediately after recording the final results of the trun-
cated patches, the outputs of FIFO 1202 will be transferred
via 1203 to further delay lines 910a or directly to final
processing 911 if the value of M is such that no other delay
lines intervene.

FIG. 13 is a diagram illustrating internal structure and
operation of the final truncated results delay lines 910a and
9105.

When processing the last row of the source input stream
array, the partial results 1301 from the auxiliary output of
intra row delay lines 908e through 908/ are considered to be
the final results of the final row of truncated patches and are
retained in a FIFO 1304 whose number of elements C is
equal to the width of the source input stream array.

When POSTEN is asserted multiplexor 1303 switches
between taking values from 1302 to taking values from the
final truncated delay line of the row above which will have
the effect of presenting the final truncated results in row first
order compatible with the ordering of all prior output results.
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Note that during that cycle of an input frame when
POSTEN is first asserted, the contents of FIFOs 1202 and
1304 are the final values of the truncated patches that
overlap the last row of the source input stream array. Any
data contained in FIFOs 1202 and 1304 prior to that cycle
will not be processed, so any suppression of the execution
when not processing the final row of the source input stream
array is optional.

Immediately after recording the final results of the trun-
cated patches, the outputs of FIFO 1304 are transferred via
1305 to further delay lines or directly to final processing 911
if the value of M is such that no other delay lines intervene.

FIG. 14 is a diagram illustrating internal structure and
operation of the final processing of all full and truncated
results.

As in FIG. 11 and with identical construction and func-
tion, if the current position of the source input stream is at
the rightmost edge, the outputs of cells of rows M-1 from
[N/2] (1101) through N-2 (1102) are retained for future
reference by registers 1104 through 1105 respectively.

If the current position of the source input stream is less
than |N/2|, multiplexor 1106 selects from the retained
values in reverse order from right to left, otherwise it selects
the current value from the last compositor of row M-1
(1103).

While processing the source input stream array, multi-
plexor 1402 feeds the results selected by multiplexor 1106
directly to finalization (1403). When in the post processing
phase outputs of truncated result delay lines 1401 are
selected instead for finalization (1403).

Finalization circuitry 1403 performs all additional com-
putations, if any, to produce the final form of the output
stream (1404) from composed patch results. This may
typically take the form of a Rectified Linear Activation
(RELU) function, whereby negative values are set to zero
and over limit values are set to maximum acceptable value,
or any other desired conditioning function such as sigmoid
or tanh. The post processing function is not required to
complete within a single source input stream cycle but is
required to accept each final result at the rate of the source
input stream array.

When DSTEN is asserted, finalization circuitry 1403
presents the final results as one value of the destination
output stream. At any time that DSTEN is not asserted, any
partial or incorrect values produced by finalization circuitry
1403 are ignored, so any suppression of operation when
results are not used is optional.

In one implementation, the destination output stream
array is processed by circuitry similar to the foregoing. In
that case, it is advantageous that the timing of the final
truncated results be identical to all previous final results. To
that end, control of FIFOs 1202 and 1304 is coordinated by
control circuitry 702 to maintain an output rate identical to
the primary output rate.

In another implementation, the destination output stream
array is the final stage of the system, and no further
processing is required. In that case, it is advantageous that
the timing of the final truncated results be completed as
quickly as possible. To that end control of FIFOs 1202 and
1304 is coordinated by control circuitry 702 to output those
results at the maximum frequency supported.

Note that the implementation described above produces a
single output element from the full set of input elements. In
a complete system that produces a large set of output
elements from the input set, the entire mechanism described
is duplicated once for every output channel with the notable
exception of control circuitry 702 which may be shared by
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output channels, since the timing of all individual sub-
functions is identical for the entire output set.

The inventor has built a working prototype of an IC in an
embodiment of the invention to test and confirm the details
and features of the invention, and operation of the prototype
confirms the descriptions above. The inventor has also
developed a software supported simulator, which has been
used up to the time of filing this application to test and
confirm the details and descriptions above.

In another aspect of the present invention, a system is
provided to accept an input stream of three-dimensional
data, as is commonly presented in medical imaging, wherein
additional circuitry and buffering is included to allow a
three-dimensional aperture function to pass over the three-
dimensional input array with corresponding computations
that correctly implement both interior and edge cases for the
first and last planes.

In yet another aspect of the present invention, for the
complex process of training a Deep Neural Network (DNN),
a hardware-assisted Neural Network training system is pro-
vided wherein the bulk of the effort is done by a forward
inference engine and the training algorithm need only use
the statistics gleaned from forward inference to periodically
adjust weights and biases for the full network to converge
the model to a desired state. With the addition of appropriate
accumulators summing the input states as the forward infer-
ence process is computed, the instant invention forms the
hardware assisted Neural Network training system.

In yet another aspect of the invention, regarding a well-
known problem wherein limitations of floating-point accu-
racy impede convergence of DNN models (known in the art
as the “vanishing gradient problem”), a single mass multi-
plier is provided with limited bit width precision, that may
be cascaded with additional adders to produce floating point
products of arbitrarily large precision. While this innovation
is not generally required for forward inference computa-
tions, it may be critically important in a DNN trainer to
avoid problems that arise when the gradients computed
become too small to measure.

N-Up Parallel Processing

In embodiments and implementations of the invention
described above focus has been on apparatus and methods
for mass multiplication in executing functions where mul-
tiplication is required, and on execution of aperture func-
tions by novel ICs in convoluted neural networks (CNNs).
It is well known in the art, however, that a complete Deep
Neural Network (DNN) must necessarily implement a full
set of quite different aperture functions, many of which may
require only minimal calculations.

To qualify as an embodiment of the present invention each
such implementation must conform to the overall system-
wide pipeline format accepting inputs as a stream of parallel
values representing an array in a consistent order and
concurrently producing outputs as a stream of parallel values
representing an array in that same order. The final node(s) of
a DNN may return conclusions reflecting an array of posi-
tions, or conclusions concerning the input array as a whole.
Embodiments of the invention described below are for
executing DNNs in novel ICs in which the pipelined execu-
tion is supported.

In an aspect of the invention the inventor has developed
a method and apparatus to significantly accelerate pipelined
operations in CNNs and in DNNs. The inventor proposes in
some embodiments of pipelined operations to stream inputs
to the ICs in multiples in parallel. In embodiments described
above inputs have in all implementations been streamed
typically left to right across each column, then top to bottom
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down the rows. Taking RGB data as an example, this would
take the form of three individual channels at each pixel
position, typically 8 bits each, representing each of the three
independent RGB color values observed at each pixel posi-
tion. The inventor terms this a 1-up implementation. 1-up
meaning streaming input values for one pixel at a time. Or
in a more general sense streaming values for one input
position at a time in the input array.

The inventor believes that considerable advantage may be
attained by streaming input, such as in the pixel example, by
more than one input position at a time. To do so circuitry
must be added to the novel IC executing the input stream
producing the output stream. The change is generally one of
size rather than complexity, as circuitry implemented in a
l-up circumstance is repeated in the IC to process input
values in parallel for additional input positions, in this
example, pixels.

While the circuitry is least problematic when the width of
each row is an integral multiple of the input count to be
streamed in parallel, this is not a required limitation of the
invention. For the pixel example, for a resolution of 1920x
1080, the number of pixels across a row (1920) is evenly
divisible by 1, 2, 3, 4, 5, 6, 8, 10, and 12. So streaming RGB
values for two pixels, termed 2-up, is an efficient approach,
as is also 3-up, and 4-up. As the number of pixels increases,
the sheer size of the IC to handle all of the processing
increases by a factor directly related to the number of pixels
to be considered in parallel, so a user must make reasonable
decisions.

But as the stream passes down through the nodes of a
DNN, the input array size is often reduced in dimension
where the stride of the aperture function is other than 1 (not
every input position will produce an immediate output
position) or where the aperture function is defined to avoid
overlaps with the edges of the input array. In these common
cases, the width of the input array cannot be constrained to
be an integral multiple of any given number of parallel
positions N. One solution is to always align the left edge of
each row of the input array to a specific position, nominally
the left, of the set of N positions. The right edge may then
be represented by an incomplete set, starting always with the
first position of the set of N positions. Additional circuitry is
then used to avoid using the invalid data for computations
and also to suppress any outputs derived from that invalid
data.

In embodiments of the invention, for a 2-up implemen-
tation in the pixel example, R, G and B values for each of
two adjacent pixels are streamed as pipelined input to the IC.
The first two pixels are the first two pixels from left in the
top row. For the RGB example there will be six input values,
these being R, G and B values for each of the first two pixels.
The next two pixels in the row are next in the stream, and
so on across the top row, then R, G and B values for the first
two pixels in the second row, and so on through the input
array. The same general protocol is followed for 3-up or
4-up.

FIGS. 17A and 17B illustrate a 1-up pipelined solution for
a well-formed minimal DNN model that might be used to
comprehend images and respond with the relative excitation
strengths of various objects the model has been trained to
recognize. Input channels 1701 are presented as input values
for individual pixels in specific order, typically left to right
across each row, then top to bottom, as described just above.
For RGB data, this takes take the form of three individual
channels, typically 8 bits each, representing the three inde-
pendent color values observed at that position. The eight-bit
channels are not a limitation to the scope of the invention.
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If the input to this DNN circuit is an output of a another
DNN circuit, as would naturally occur if a large DNN were
broken up into smaller pieces as an aid to processing, then
channels presented would be one for every feature passed
into the DNN. For example, if a particular segment of a
model requires 64 feature channels as input, each value
would be presented in parallel in the specified format, as an
unsigned or signed integer, or a floating-point value, with the
desired bits of accuracy.

It is important to understand that the blocks depicted in
FIG. 17A (as well as in other diagrams described) do not
represent steps executed in sequence. Each block represents
either input channels or circuitry performing functions, such
as an aperture function. The arrows between blocks repre-
sent sets of parallel conductors passing values between
processing circuits. All processes are active simultaneously
whenever inputs to that block are presented. As the input
stream commences, circuitry represented by blocks becomes
active, one after another, until all processes are active, and
an output stream is produced in plural channels as well.
Emission of final outputs of the first corner of the input array,
nominally the upper left, begins while inputs are still being
accepted.

First 7 by 7 Convolution node 1702 in this model is
typical for RGB inputs in DNNs used for visual compre-
hension. This 7 by 7 kernel may be applied only where the
kernel patch fits within the bounds of the input array (typical
for RGB inputs) or it may be applied to every input position
and the missing values synthesized (typical for reprocessing
features). Generally, a substantial number of output channels
(typically 64) are produced and the number of channels
throughout the rest of the system typically increases as the
feature values pass through additional nodes.

Each of subsequent Convolution nodes 1703, 1704, 1705
also accept and produce multi-channel array streams of the
same dimensions as their inputs. The number of output
channels for each is arbitrary and may be more, less, or the
same as the number of input channels.

Concatenation node 1706 in this model accepts parallel
input array streams produced by nodes 1704 and 1705 and
synchronizes them to produce a combined set of channels.
The channels from the Convolution nodes are not altered in
value. But since the nature of pipelines is such that each
output corresponding to a specific array position from a 1 by
1 Convolution will be produced before an output from the 3
by 3 Convolution, the Concatenation function will have to
provide buffering in the form of first-in-first-out (FIFO)
circuits so that all channels may be output with data corre-
sponding to the same position presented at the same time.

MaxPool node 1707 in this model utilizes an aperture
function that compares all values of the patch and outputs
only the maximum value for each channel independently.
The number of channels is not affected but the array dimen-
sions of the input stream will be reduced in the output
stream. If, as is typical, a MaxPool node reduces the
horizontal dimension by two as well as the vertical dimen-
sion by two, the output array will be one quarter the size of
the input array.

Since the frame rate for the input stream and for the output
stream must necessarily be the same (outputs cannot be
produced faster than the inputs they are based upon, and
outputs cannot be produced slower than the inputs or data
will be lost), the net effect is that the clock rate for the
reduced output array stream will be reduced proportionately.

In this MaxPool example, since only one output is pro-
duced for a patch of four input positions, the required output
rate is only one quarter of the input rate. All subsequent
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nodes in the pipeline will therefore operate at a reduced
effective throughput. The reduced effective throughput may
be advantageous as the number of channels grows ever
larger. Some resources that might be dedicated to each
channel can be shared between channels when there are
many more cycles available to make the required calcula-
tions, leading to an overall reduction in circuit size with only
a small increase in power. The reduction in dimensionality
also forms an important basis for the instant invention.

Subsequent nodes of the model illustrated may utilize
similar or dissimilar patterns of connections as long as each
pattern supports the system-wide interface of presenting all
channels of data corresponding to a given position in any
input array stream at the same time.

After MaxPool node 1707 values stream to additional
convolution, concatenation and MaxPool nodes in this
model as illustrated, but, as these nodes are functionally the
same as nodes already described, these nodes do not have
element numbers.

Global Average node 1708 in FIG. 17B is distinct in that
the aperture function for node 1708 covers the entire remain-
ing dimensions of the previous input array stream, and
simply returns the average value of each channel over the
entire array. The output array dimensions are thus 1 by 1 and
form Output Channels 1709 of the entire circuit.

FIGS. 18A and 18B illustrate overall construction and
flow of a 4-up pipeline implementing the same form of DNN
model as illustrated in FIGS. 17A and 17B. Input channels
1801 are presented as four sets of data for each channel in
parallel. For RGB data, this would take the form of four
individual pixels representing four adjacent columns of the
input array comprising four RGB values for each pixel for
a total of 12 inputs accepted simultaneously in parallel.
Alternatively, input channels may be from another DNN
circuit in which case they take the form of four complete sets
of input channels representing four adjacent columns of the
input array. For example, if the model requires 64 feature
channels as input, the four sets would comprise a total of 256
parallel inputs.

First 7 by 7 Convolution node 1802 is typical for RGB
inputs in DNNs used for visual comprehension. In this 4-up
implementation node 1802 accepts inputs for four pixels at
a time and produces outputs for four pixels at a time. The
number of output channels is typically fairly large, 64 or
more, compared to the number of input channels, and no
longer represents color information. Throughout the remain-
der of the DNN in this model the channels represent detec-
tion strengths of features or combinations of features found
in the input array and have independent values for each
position. Each of subsequent Convolution nodes 1803, 1804,
1805 also accept and process inputs for four pixels at a time
for each channel. Concatenation node 1806 accepts four sets
of channels from Convolution nodes 1804 and 1805 and
outputs the combined channels in sets of four.

First MaxPool node 1807 is labeled 4-up to 2-up. Node
1807 takes the maximum of four samples representing a
patch of input array positions comprising two adjacent
columns on two successive rows. Since the effect is to
reduce the dimensions of the input array stream to produce
an output array stream one half the width and one half the
height, the effective throughput of all subsequent nodes is
reduced by a net factor of four. When using single input
processing, the subsequent processing clock may be reduced
to take advantage by utilizing more compact circuitry.

When using N-up parallel input processing, the reduction
in output array width is used to reduce the number of parallel
outputs instead. Since the parallel inputs represent adjacent
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columns in the input array stream on the same row, only the
reduction in width is relevant. While it is possible to retain
the N-up parallel outputs at a reduced frequency, there is no
advantage in size or power in so doing. The net effect of
MaxPool node 1807 is to reduce the parallelism from 4-up
to 2-up (as labeled) in the horizontal dimension and reduce
the processing frequency by a factor of two rather than four
as in the 1-up case described above.

Nodes 1808, 1809, 1810, and 1811 process data in 2-up
parallel tracks and are each roughly half the size of their
4-up counterparts. This does not correspond to a reduction in
power as the total number of operations required by a 4-up,
2-up, or 1-up circuit are the same, and only the overhead to
manage the N-up coordination is reduced.

Second 2 by 2 MaxPool node 1812 again takes the
maximum of four samples representing a patch of input
array positions comprising two adjacent columns on two
successive rows. The net effect of node 1812 is to reduce the
parallelism from 2-up to 1-up in the horizontal dimension
and reduce the processing frequency by a factor of two. All
subsequent nodes as shown in FIG. 18B operate on single
sets of their respective input and output channels and final
output 1813 takes the form of single samples of each channel
presented in parallel simultaneously.

FIGS. 19 and 20 are tables describing array stream sizes
for a typical small DNN applied to an input stream com-
patible with images in HD RGB format. The table of FIG.
19 describes the DNN implementing 1-up processing only,
as depicted in FIGS. 17A and 17B, and the table of FIG. 20
describes the same DNN implementing 4-up processing
initially and transitioning to 1-up processing in subsequent
nodes, as depicted in FIGS. 18A and 18B.

Having described the nomenclature and general proce-
dures for N-up parallel processing, the inventor now pro-
vides a specific example of apparatus and method for
applying a 3 by 3 Convolution function to an input array,
using 4-up parallel processing. The input array in this
example is a pixel array in RGB color, as used in many other
examples in this specification. It should be noted that this is
not a limitation in the scope of the invention, as the 3 by 3
Convolution with 4-up parallel processing may be used for
many other formats of input arrays. It is to be understood
again in this example that the 3 by 3 blocks shown represent
circuitry performing the kernel functions on the input
stream.

FIG. 21 illustrates the example of circuitry on an IC
performing a 3 by 3 Convolution node using a 4-up data
stream. In FIG. 21, one set of four inputs 2101 is a set
retained from an immediately previous input interval and is
retained with a current set of four inputs 2102 to provide all
required inputs for all four output channels of the 3 by 3
Convolution. Use of the inputs from the immediately pre-
vious input interval along with the inputs from the instant
interval is necessary to fully calculate the outputs in pipe-
lined processing as is described in enabling detail above.

Po> P1s P»s and p; represent the input channel values for
positions 0, 1, 2, and 3 in the first row in the input array,
respectively. For brevity, only a single symbol is used, but
each symbol represents all channels of the input position.
For the pixel circumstance each data point p, represents
values for R, G and B for that pixel.

W, through w,, represent the set of weights to be
applied to the values in the input channels. Since each
weight is applied to one and only one input channel, the
number of input channels does not impact the structure of
the circuit, so the multiple channels are not shown.
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The weights in kernel rows 2103, 2104, and 2105 are
applied to input channels p,, p,, and p, in parallel (simul-
taneously) and the partial products for each set of weights
for each row are immediately summed as is the rule for the
aperture function of a 3 by 3 Convolution. As described
above in enabling detail for pipelined processing, partial
sums are passed along from each functional circuit to the
next, and outputs are produced when all necessary partials
are accomplished. Application of the weights in row 2105
produces the final output for the kernel for the current row
by combining the partial products with the sum of the
products from applying the weights of row 2104 from the
previous row. Application of the weights of row 2104
produces an intermediate value by combining the partial
products with the sum of applying the weights of row 2103
from the previous row. Applying the weights of row 2103
produces an initial value by summing the partial products
and retaining the partial products for later use. A bias, if any,
may be introduced at any stage. An activation function, if
any, would be applied to the final output 2105.

A complete circuit implementing the weights of rows
2103, 2104, and 2105, including any bias and activation
function, produces the first output channel of the 4-up set.

When the first 4-up set is presented from the input array
stream, there is insufficient data to calculate all four required
outputs, so computation for all outputs is delayed until the
second 4-up set is acquired, and valid data is available for
computation using inputs from both sets 2101 and 2102.

Circuits 2106, 2107, and 2108 apply weights in circuits
that are copies of the previous circuit, and the functions
differ only in to which positions of the inputs the weights are
applied. Note that the set of weights w, , through w, , are
identical for all output channels but that each combination of
one weight and one input channel is unique.

The outputs calculated using the weights of row 2105 of
the first kernel copy produce the first parallel set of channels
qo of the output array stream, while the outputs using the
weights of the other kernel copies 2106, 2107, and 2108
produce the remaining parallel sets of channels q,, q,, and
q5, respectively of the output stream 2109.

Since the first output q, corresponds to the 3 by 3 kernel
being centered on p,, the circuit corresponding to the
arrangement in FIG. 21 is the solution for the inset or “valid”
version of the 3 by 3 Convolution. The width of the output
array stream is thus two positions reduced from the width of
the input array stream as conforms to the definition of the
aperture function for said variation. (The height is also
typically reduced by two rows but that is irrelevant to the
horizontal processing.)

FIG. 22 illustrates the required arrangement for the circuit
to produce outputs for the 4-up input channels for the
“same” version of the 3 by 3 Convolution, i.e. where the
dimensions of the output array stream are not reduced and
one output position is produced for every distinct position of
the input array stream. In this variation, an input set 2203
presents the current values of the 4-up input array stream,
while input sets 2202 and 2201 present the retained values
from the previous two sets.

Application of kernel circuits 2204, 2205, 2206, and 2207
produce the values of the 4-up output array stream 2208, q,,,
q,, 95, and q; respectively, and are now aligned such that the
center of each kernel corresponds to one position of the 4-up
input array stream.

When the first 4-up channel set is presented from the input
array stream, there is insufficient data to calculate all four
required outputs, so computation is delayed until the second
4-up set is presented and valid data is available for both sets
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2202 and 2203. Valid data will not yet be available for set
2201, and kernel circuit 2204 will either suppress inclusion
of weights applied to p; of 2201 or force the uninitialized
values to zero as is consistent with the application of the 3
by 3 Convolution aperture function to positions that cause
the kernel to overlap the edge of the input array. This
suppression mechanism is triggered for the first set of each
row, but subsequent sets on that row will make use of the p,
value set 2201 to compute the full kernel for that output
position q,,.

In processing a complete DNN, situations arise where the
4-up stream technique is applied to input array streams
whose widths are not an even multiple of four. In such cases,
the invalid values in the final 4-up set are suppressed by
forcing the invalid values to zero or by other means, and the
final output positions in the last 4-up set of the row are
ignored. This is consistent with both the inset (“valid”) and
full (“same”) variations of the 3 by 3 aperture function.

In all cases, the first position of each row of the input array
stream is always presented in the first position of the 4-up
input set.

In cases where the input row length is not an even
multiple of the processing set width, the processing clock is
increased such that the overall throughput of the N-up
processing is compatible with the throughput of the 1-up
input source, and special buffering is required to pack
incoming values into N-up sets. This special buffering is
described below.

FIG. 23 illustrates the required arrangement for the circuit
to output two variants of a 1 row by 7 column Convolution
over 4-up data. From the previous discussion of 3 by 3
Convolutions, one experienced in the art should discern that
the specific number of rows in the kernel only affects the
number of partial sums retained over time and not the
mapping of kernel weight columns to input set columns. The
data arrangement shown in FIG. 23 thus applies equally to
7 by 7, 3 by 7, or any other kernel whose width is 7.

As described above, input set 2303 is the currently

presented 4-up data set from the input array stream and sets
2302 and 2301 are previously presented and retained data
sets from the immediately prior and second prior sets,
respectively.
Kernel processing circuits 2304, 2305, 2306, and 2307
represent the alignments required to produce inset (“valid”)
Convolution outputs 2308, and circuits 2309, 2310, 2311,
and 2312 represent the alignments required to produce full
(“same”) Convolution outputs 2313.

Wy of circuit 2304 aligns with P, of input set 2301 to
produce the inset variant, and w,, 5 of circuit 2308 aligns with
P, of input set 2302 to produce the full variant, where both
circuits 2304 and 2309 produce output q,, for their respective
use cases.

One experienced in the art should understand that the two
sets of kernels have considerable overlap of identical func-
tions and that it is straightforward to arrange a single circuit
using only five uniquely mapped kernel circuits to produce
either variant on demand. One experienced in the art should
also understand that any M-up streaming data set (including
1-up) may be repackaged into any other N-up streaming
format (where M=N) as required to maintain the overall
throughput of the system high enough to accept and process
the input array stream at the presented rate. The cost of so
doing is to require N copies of certain core processing
circuits, but the overall effect is to allow circuits to restrain
the processing clock to reasonable limits for the implemen-
tation method while still accepting the input stream at full
speed.
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FIGS. 24 A and 24B illustrate a typical implementation of
a 2 by 2 MaxPool node wherein the largest value for each
channel is selected for distinct patches of two adjacent
column positions over two adjacent rows.

FIG. 24A shows the arrangement of a 2 by 2 MaxPool
node over a 4-up data stream 2401. When the first row of
each pair is presented, a comparator 2402 evaluates inputs p,,
and p, and passes the larger to a FIFO circuit 2403 to be
retained for use when the second row is presented. Com-
parator 2404 and FIFO 2405 at the same time do the same
operation for inputs p, and p;. When the second row of each
pair is presented, comparator 2402 accepts the retained
maximum from FIFO 2403 for the same column positions
from the first row and compares it to inputs p, and p, and
outputs the greater of the three values as output q,, while
comparator 2404 and FIFO 2405 perform the same opera-
tion on inputs p, and p; to produce output q;.

Output set 2406 comprises two sets of channels, each
individual value of which is the maximum of four samples
of each specific channel (in this aperture function, values
from different channels do not interact). The output 2406 of
FIG. 24A is thus a 2-up output data stream produced from
a 4-up input data stream.

FIG. 24B shows the arrangement of the same 2 by 2
MaxPool node over a 2-up data stream 2407. Comparator
2408 and FIFO 2409 are identical in function to those
described above, but only a single set is required to accept
2-up inputs p, and p, to produce a single set of output
channels 2410. Output 2410 of the second example is thus
a 1-up output data stream produced from a 2-up input data
stream and all downstream nodes may take the smaller 1-up
form.

The tiled MaxPool function, along with any other aperture
function with a 2 by 2 stride, reduces the size of the input
array by a factor of 2 in each dimension. As the total width
of an N-up array stream is N times the number of sets
presented, the reduction can be effected by reducing either
the width in sets or reducing N, as long as N is evenly
divisible by the horizontal stride. Because N is the factor of
replication of the copies of the circuit executing in parallel,
reducing N is preferred whenever possible.

FIG. 25 illustrates a contrived example where reducing N
is not possible. It applies a 2 by 2 MaxPool node, but to a
S-up input stream in this case. As before in the 3 by 3
Convolution cases, input set 2501 is retained and used in
concert with current input set 2502 to present the minimum
set of values such that all outputs may be produced on the
same clock cycle. (Other arrangements are also possible
such as switching the first comparator to process either p,,
with p, or p, with p, on alternate input sets while setting the
middle comparator to process p, with p, of alternate inputs.
This would reduce the number of required copies of the
aperture function from five to three and would be advanta-
geous where the aperture function implementation is sig-
nificantly more complicated than a simple comparison.)

In this example, comparator 2503 and FIFO 2504 operate
on the retained values of p, and p,, comparator block 2506
operates on the retained values of p, and p;, while com-
parator block 2507 operates on the retained value of p, and
the current value of p,. Comparator block 2508 operates on
the current values of p, and p,, and comparator block 2509
operates on the current values of p; and p,.

Since it is not possible within the constraints of the
pipeline to implement a 2.5-up data stream, the reduction in
dimension in this example must be applied to the width of
the input array, and output 2510 is thus a S-up output
reflecting the 5-up input stream.
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As described above, under some circumstances it may be
advisable to repackage an M-up stream as an N-up stream
with the same array dimensions. A specialized FIFO circuit
may be used to perform this function. FIG. 26A illustrates
such a FIFO used to repackage a 4-up stream 2601 into a
2-up stream 2603. FIFO 2602 accepts inputs 4 at a time and
stores them as individual entries. Whenever 2 entries are
available in the FIFO outputs are produced 2 at a time. The
data flow in FIG. 26 (as well as in following figures) is down
from the inputs through the circuitry to the outputs.

In the common circumstance where the width of the input
stream is not an integral multiple of the input stream set size,
a counter must be included to track the number of valid
entries presented for each row. For example, if the input
array width is 10 using a 4-up input set where 3 sets of 4 are
required to cover a complete row, the FIFO must ignore the
last two entries of the 3rd set of inputs presented, and output
5 sets of 2-up outputs rather than 6. After each row, the
counter is reset and begins counting entries on the next row.
The array width limit can be fixed or presented via a
preloaded register. If the array width is known to always be
an integral multiple of both input set size and output set size,
then this logic may be omitted.

FIG. 268 illustrates repackaging a 3-up stream 2604 into
a 5-up stream 2606. FIFO 2605 accepts inputs 3 at a time but
stores them as individual entries. Whenever 5 entries are
available in the store the FIFO produces outputs 5 at a time.

As described above, extra operations must be imple-
mented to account for invalid entries that may occur at the
end of rows where the array width is not an integral multiple
of the input set size. A similar problem occurs when the array
width is not an integral multiple of the output set size. In this
case, a final set must be issued when each row has been
completely received, the final set containing the final entries
of the row in the first outputs, and containing invalid entries
of no specific value in the remaining sets of channels. For
convenience, a practice of placing all zeroes in the invalid
entries may be used to reduce total circuit size in subsequent
nodes where zeros have no effect such as in Convolution and
MaxPool.

The size of the FIFO must be sufficient to retain as many
input sets as required to guarantee that no data is lost. To
maintain the throughput of the system as a whole, outputs
are issued as soon as sufficient entries are available to
produce an output set.

While any set size may be repackaged to any other set
size, the required processing frequency will be altered
proportionally to the ratio of the sizes. For any M-up input
repackaged as N-up output, the required processing fre-
quency may be described as f, ,~=f, xM/N

Throughout the system, for the simplest operation, each
circuit accepting rows should provide for and ignore unused
invalid entries at the end of all rows where the row width is
not an integral multiple of the set size. This is not a strict
limitation, as the circuit could work anyway with additional
logic, not shown here. This guarantees that every column
position maps to the same channel set within the parallel sets
presented for every row and minimizes the complexity of
operations that combine values of the same column positions
over multiple rows.

FIG. 27A illustrates implementation of a Concatenation
node where channels from one source 2701 are concatenated
on a per position basis with channels from another source
2702, or more sources (not shown), such that output 2706
contains all channels from all sources. Channel values are
not mixed or altered by this node. In a common circum-
stance where the sources have differing timings, one or both
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of the FIFOs 2703 and 2704 will retain input channel values
until a full set of output channels are available. The inter-
leaving circuit 2705 will concatenate all channels from set
Po from each source to produce q,, from set p, to produce q,
and so forth.

A common example that requires this solution would be
combination of the output of a 3 by 3 Convolution node and
the output of a 1 by 1 Convolution node, each of which is
applied to the same input array stream. While both nodes
process the stream at the same rate, the outputs of the 3 by
3 node cannot be finalized until the third row of the input
stream is presented, while the outputs of the 1 by 1 node can
be finalized as soon as any data from the input stream is
presented. The net effect is that the outputs of the 1 by 1 node
corresponding to specific positions of the input array stream
will be presented to the Concatenation node significantly
before the outputs of the 3 by 3 node for those same
positions. Since the next node after the Concatenation node
will require all the channels for any given position to be
presented before any calculations can be made, the Concat-
enation node must buffer the input stream that is presented
earlier and wait for the input stream that is presented later to
reach the same position before it can present a full set of all
channels for the given position on the outputs. This is
equally true for 1-up or N-up data streams.

If every input array position of the slowest path is always
presented after the same position via all other paths, then the
FIFO for that path may be omitted. If under some conditions,
typically final positions of the stream, the slowest path will
not be presented last, then the data in the FIFO for that path
must be retained with a minimum number of entries required
to prevent data loss under those special conditions.

If the data path widths for the various sources differ, the
path widths may be repackaged to match each other as in
FIGS. 26A and 26B, or that function may be merged with the
FIFOs used for the concatenation buffering. One experi-
enced in the art should understand that any number of paths
may be concatenated as a single operation by adjusting the
size of the FIFOs for each of the earlier paths to retain as
many values as each path can present, in the worst-case
timing, before the corresponding positions are presented by
the slowest path.

FIG. 27B illustrates implementation of a 4-up Dense
node. A Dense node is mathematically equivalent to a
Convolution that has a kernel size identical to the size of the
input array. Therefore, to create each output channel there is
one distinct weight applied to each input position for each
input channel. The number of output channels bears no
relationship to the number of input channels and the output
array produced is always a 1 by 1 array. Since inputs 2707
are submitted in sets of four in this example implementation,
weights 2708 specific to each input position are loaded from
a local store (not shown) and multiplied in circuitry 2709 by
current inputs to form partial products of the full kernel. All
partial products from all input channels presented are
summed to produce a single 1-up set of output channels
2710.

FIG. 27C illustrates implementation of a 4-up Global
Average node which takes all values for all positions of each
input channel and averages them to produce the same
number of output channels. A Global Average node is
mathematically equivalent to a Convolution that has a kernel
size identical to the size of the input array and is applied only
to each input channel individually (as opposed to all input
channels together as immediately above) with a common
constant value equal to the reciprocal of the number of
elements in the kernel. Since it is mathematically equivalent
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to multiply the reciprocal either before after the summation
operation, circuit 2712 simply sums all values of each
position for each input channel 2711 and then multiplies by
the reciprocal of the number of elements when all input
values have been summed, to produce each output channel.
Since all input positions are merged into a single value,
output 2713 is a single 1-up set of channels with an array
size of 1 by 1.

FIG. 28 illustrates a 4-up implementation of a 3 by 3
Local Average node which utilizes a sliding aperture func-
tion to compute the average of each input channel over a
subset of positions to produce the output channels. This
implementation forms the inset or “valid” set of outputs
where the aperture does not overlap with the edges of the
input array, and the number of samples is the same for all
output positions. Each output channel corresponds to a
single input channel and data is not mixed between channels.
As with implementation of a Convolution node with similar
size and input mapping show above in FIG. 21, current input
set 2802 is retained by registers 2801 such that current and
immediately prior input sets may be accessed simultane-
ously. Each of circuits 2803, 2804, and 2805 apply the same
summation of each input channel of sets p,, p,, and p,, but
apply that sum to three different partial sums over time to
produce set q, of output array stream 2809. Circuit 2803
initializes the running sum for the first row, circuit 2804
utilizes output of circuit 2803 delayed by a FIFO (not
shown) to produce the running sum for the middle row, and
circuit 2805 utilizes delayed output of circuit 2804 to
produce each final summation. Circuit 2805 then multiplies
the final summation by the reciprocal of the number of
elements, in this case 1/9, to produce output set q,. An
activation function may be integrated into the circuit or
equivalently placed between the nodes.

Equivalent circuit 2806 produces output set ¢, from
channel sets p;, p, and p; of the prior input set. Likewise,
circuit 2807 produces q, from p, and p; of the prior input set
2801 along with p, of the current input set 2802, and circuit
2808 produces q, from p, of the prior input set 2801 along
with p, and p, of the current input set 2802.

If the Local Average aperture function is to be produced
for every valid position, output 2809 has a reduced array size
compared to the input, in this case the width and height are
each reduced by two positions, but this is in general insuf-
ficient to reduce the 4-up stream significantly. If a horizontal
stepping size other than one is used, i.e. not every possible
output position is utilized, the reduction of horizontal
dimension may be implemented in the circuit as a reduction
of N. For example, if the horizontal stepping size is 2, only
every other value is required, and the circuit may produce
2-up output channels by computing g, and g, only and omit
the unused circuitry for q; and q;. Similarly, if the horizontal
stepping size is greater than 4, the various circuits used to
compute q, through g5 can be utilized in turn to produce a
1-up output stream.

FIG. 29 illustrates another 4-up implementation of a 3 by
3 Local Average node that forms the full or “same” set of
inputs where the aperture overlaps the edges of the input
array, and the output array dimensions are the same as the
inputs array dimensions. In this case, the number of input
positions sampled at the edges are not the same as the full
set of samples taken in the interior, so the final reciprocal
used for each output position must reflect the number of
samples used for that output position.

In a similar fashion to the example circuit shown in FIG.
22, the variation in FIG. 29 utilizes input set 2903 to present

20

25

35

60

65

40

the current values of the 4-up input array stream, while input
sets 2902 and 2901 present the retained values from the
previous two input sets.

Application of summation circuits 2904, 2905, 2906, and
2907 produce the values of the 4-up output array stream
2908, qo, q;, 9., and g5 respectively, and are now aligned
such that the center of each summation corresponds to one
position of the 4-up input array stream. In this example, only
summation circuit 2904 will intersect the left edge of the
input array when the first 4-up input is presented at the
beginning of each row, but all four summation circuits may
intersect the right edge of the input array depending on the
number of sets populated at the end of the row, so the choice
of reciprocal reflecting the number of samples taken will
vary accordingly.

Observing the close correspondence of the example cir-
cuits FIGS. 21 and 28, and also the close correspondence of
example circuits FIGS. 22 and 29, one experienced in the art
should understand that the structure and replication of the
computations is not affected by the nature of the aperture
function implemented, and further that this apparatus and
method is equally applicable to any aperture function
defined over a similar sliding window.

FIG. 30A illustrates implementation of a 4-up Subset
node that passes only specific channels through to the next
node but passes the specific channels with equivalent array
dimensions and timing. This node type is typically used to
split the incoming channels such that different styles of
processing can be applied to each group of incoming chan-
nels. If the set of channels routed to the output is fixed, the
connection between inputs 3001 and outputs 3003 may be
made by direct wiring of physical conductors. Otherwise
routing circuitry 3002 will effect the required selection of
channels using multiplexors.

FIG. 30B illustrates typical implementation of a 4-up
Crop node that presents a subset of positions of an input
array stream to an output array stream. Typically, entire rows
at the top edge or the bottom edge, or both, are omitted along
with columns at the left edge or the right edge, or both. To
allow for the columns omitted at the left edge to be a number
that is not an integral multiple of the data set size N, current
input set 3005 is combined with prior input set 3004 in
repackaging circuitry 3006 to produce channel sets qq, q;,
q,, and q5 of output 3007 such that q,, is always used for the
first column of each row. When either no omission on the left
edge of the input array stream is required, or the number of
columns omitted is an integral multiple of N, the prior input
set 3004 may be omitted from the simplified circuit. If the
output array is sufficiently reduced from the input array, then
the N-up input stream may be repackaged into an M-up
output stream within the positional selection circuitry.

In any of the nodes described above, either mass multi-
pliers or individual multipliers may be used with equal
facility. Where many weights are applied against each input,
mass multipliers have an advantage over individual multi-
pliers based on the bit widths of the multiplicands and the
products. In other circumstances, individual multipliers of
equivalent precision may be smaller or lower in power
usage. The N-up pipeline is not dependent on the type of
multipliers used.

In another aspect of the invention ICs might be provided
with one or a plurality of interconnected functional circuits
and an input and an output port, each IC implementing a
portion of a neural network, as are described above with
reference to FIGS. 17A and B and FIGS. 18A and B.
Individual ones of such ICs in a system embodiment may be
connected from a first IC receiving primary input from a
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source array, to other ICs, output ports to input ports, either
in a linear order or in interconnected chains with parallel
connections. An output port of a last IC in the connected set
would then provide the output of a neural network compris-
ing functionality of all of the ICs.

FIG. 31 illustrates such a system 3100 of ICs intercon-
nected to implement a neural network. IC 3101 has an input
port 3102 receiving a stream of input values. The input
values may be in any protocol as described above for input
arrays that may have a single value per position in the array,
or multiple values per position as in the example of an
HDMI image having RG and B values for each position in
the input array, or the input stream may be ordered as an
N-up stream as described in embodiments above.

In FIG. 31 five ICs 3101, 3105, 3106, 3107 and 3108 are
shown interconnected between input and output ports. IC
3101 is illustrated with functional circuits 3104 intercon-
nected on the IC, leading to an output port 3103, which
connects to the input port of IC 3105. The functional circuits
are implementing aperture functions as described in different
embodiments above. In this example ICs 3105, 3106, 3107
and 3108 show functional circuits with the same intercon-
nection as IC 3101, but it is emphasized that the ICs are
different and the functional circuits and the interconnections
among the functional circuits are not the same. The graphics
are representative.

1C 3105 connects by the output port to input ports for both
ICs 3106 and 3107, to illustrate that there may not be a
simple linear connection among the ICs. The output ports of
1Cs 3106 and 3107 are shown both connected to the input
port of IC 3108. Again, the graphics are representative. In
any system of interconnected ICs the interconnections may
be more complicated. IC 3108, as the last IC in the system
outputs an output stream for the neural network imple-
mented by the system of interconnected ICs. The connec-
tions between input ports and output ports are parallel paths
of conductors for delivering bits of values for each output
interval. The system of ICs implements a neural network of
some depth. A limitless variety of neural networks may be
implemented in this aspect of the invention by interconnect-
ing individual ICs provided with different nodes and inter-
connections on the individual ICs.

The skilled person will understand that the embodiments
illustrated in the figures and described above are all exem-
plary, and do not detail every form that the invention might
take. There may be a variety of other forms that may be
realized within the scope of the invention.

The scope of the invention is limited only by the claims.

The invention claimed is:

1. An integrated circuit (IC), comprising:

an input port receiving a first ordered stream of input
values from a source array;

a first set of functional circuits implementing a first
aperture function, the first set receiving the first ordered
stream of input values, producing partial results by
individual ones of the first set of functional circuits as
required input values are received, retaining the partial
results for periods of time, and combining the partial
results at required points in time, producing a first
ordered stream of output values;

a second set of functional circuits implementing a second
aperture function, the second set receiving the first
ordered stream of output values as a second ordered
stream of input values, producing partial results by
individual ones of the second set of functional circuits
as required inputs are received, retaining the partial
results for periods of time, and combining the partial
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results at required points in time, producing a second
ordered stream of output values;

additional sets of functional circuits following the first

and the second set of functional circuits, each addi-
tional set in order receiving the ordered stream of
output values of preceding sets as an ordered stream of
input values, producing partial results by individual
ones of the functional circuits as required inputs are
received, retaining the partial results for periods of
time, and combining the partial results at required
points in time, producing a final ordered stream of
output values; and

an output port receiving a last ordered output stream from

the sets of functional circuits and enabling the output
stream to be transmitted off the IC.

2. The IC of claim 1 wherein the ordered stream of
independent input values are values ordered from input
positions of the source array from a first input point at a first
column of a first row, taken across columns of the first row,
then down row by row and across columns of the rows to a
final point at the last column of the last row.

3. The IC of claim 2 wherein the source array is an image
frame having RGB values at each input position.

4. The IC of claim 1 wherein all circuitry is active
simultaneously, and the output stream of the IC at the output
port is produced while inputs are being received at the input
port.

5. The IC of claim 1 wherein the output stream of one or
more sets of functional circuits implementing an aperture
function is conducted as an input stream to two or more
following sets of functional circuits implementing aperture
functions.

6. The IC implementing the portion of a larger neural
network of claim 5 wherein outputs of the two or more
following sets of functional circuits are combined and
conducted to a single set of functional circuits implementing
an aperture function.

7. The IC implementing the portion of a larger neural
network of claim 1 wherein the aperture function of a set of
functional circuits is applied only to input positions wherein
the entire kernel of the aperture function is within the outer
boundaries of the source array.

8. The IC implementing the portion of a larger neural
network of claim 1 wherein the aperture function of a set of
functional circuits is applied to points in order of the input
array, and output values associated with points outside the
outer boundaries are synthesized.

9. A system of connected integrated circuits (ICs) imple-
menting a neural network, comprising:

a first IC implementing a first portion of the neural

network, the first IC comprising an input port receiving
a first ordered stream of input values from a source
array, a first set of functional circuits implementing a
first aperture function, the first set receiving the first
ordered stream of input values, producing partial
results by individual ones of the first set of functional
circuits as required input values are received, retaining
the partial results for periods of time, and combining
the partial results at required points in time, producing
a first ordered stream of output values, a second set of
functional circuits implementing a second aperture
function, the second set receiving the first ordered
stream of output values as a second ordered stream of
input values, producing partial results by individual
ones of the second set of functional circuits as required
inputs are received, retaining the partial results for
periods of time, and combining the partial results at
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required points in time, producing a second ordered
stream of output values, additional sets of functional
circuits following the first and the second set of func-
tional circuits, each additional set in order receiving the
ordered stream of output values of preceding sets as an
ordered stream of input values, producing partial
results by individual ones of the functional circuits as
required inputs are received, retaining the partial results
for periods of time, and combining the partial results at
required points in time, producing a final ordered
stream of output values, and an output port receiving a
last ordered output stream from the descending sets of
functional circuits and enabling the output stream to be
transmitted off the IC;

a second IC implementing a second portion of the neural
network, the second IC comprising functional circuits
implementing aperture functions connected in order
from an input port of the second IC, connected to the
output port of the first IC, receiving the stream of
output values produced by the first IC; and

additional ICs implementing additional portions of the
neural network, each additional IC connected to the
output port of the previous IC, receiving the output
stream of the previous IC as an input stream;

wherein a final IC provides an output stream of the DNN.

10. An integrated circuit (IC), comprising:

an input port receiving a first ordered stream of input
values from a source array in sets of values from two
or more adjacent input positions in each input interval;

a first set of functional circuits implementing a first
aperture function, the first set receiving the first ordered
stream of input values in sets of values from two or
more input positions, producing partial results by indi-
vidual ones of the first set of functional circuits as
required input values are received, retaining the partial
results for periods of time, and combining the partial
results at required points in time, producing a first
ordered stream of output values, the first set of func-
tional circuits comprising duplicate functional circuits
accommodating processing of the repeated sets of input
values;

a second set of functional circuits implementing a second
aperture function, the second set receiving the first
ordered stream of output values as a second ordered
stream of input values producing a second ordered
stream of output values;

additional sets of functional circuits implementing aper-
ture functions following the first and the second set of
functional circuits, each additional set in order receiv-
ing the ordered stream of output values of the preceding
sets as an ordered stream of input values, the additional
sets of functional circuits producing a final ordered
stream of output values; and

an output port receiving a last ordered output stream from
the sets of functional circuits and enabling the output
stream to be transmitted off the IC.

11. The IC of claim 10 wherein the ordered stream of
input values is received at the input port of the IC in sets of
N input points in each input interval, and the sets of
functional circuits for each node are implemented on the IC
in multiple copies as needed to enable processing of N sets
of input values in parallel.

12. The IC of claim 10 wherein the ordered stream of
input values are values ordered from input positions of the
source array from a first set beginning at an input position at
a first column of a first row, taken as N positions in adjacent
order from the first position, then in sets of N positions
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across columns of the first row in each input interval, then
down row by row and across columns of the rows to a final
position at the last column of the last row.

13. The IC of claim 12 wherein the width of the input
array is an integral multiple of N.

14. The IC of claim 12 wherein the source array is an
image frame of RGB values at each input position.

15. The IC of claim 10 wherein all circuitry is active
simultaneously, and the output stream of the IC is produced
while inputs are being received.

16. The IC of claim 10 wherein individual ones of the sets
of functional circuitry further comprise retention circuitry
enabling retention of one or more sets of input values
received in previous input intervals, assuring that all neces-
sary input values are available to produce required output
values.

17. The IC of claim 10 wherein the kernel of the aperture
function of the first set of functional circuits is applied only
to input positions wherein the kernel is within the outer
boundaries of the source array.

18. The IC of claim 10 wherein the kernel of the aperture
function of the first set of functional circuits is applied to
points in order of the input array, and output values associ-
ated with positions outside the outer boundaries of the
source array are synthesized.

19. A system of connected integrated circuits (ICs) imple-
menting a neural network, comprising:

a first IC implementing a first portion of the neural

network, the first IC comprising an input port receiving
a first ordered stream of input values from a source
array in repeated sets of values from two or more
adjacent input positions in each input interval, a first set
of functional circuits implementing a first aperture
function, the first set receiving the first ordered stream
of input values in sets of two or more input points,
producing partial results by individual ones of the first
set of functional circuits as required input values are
received, retaining the partial results for periods of
time, and combining the partial results at required
points in time, producing a first ordered stream of
output values, a second set of functional circuits imple-
menting a second aperture function, the second set
receiving the first ordered stream of output values as a
second ordered stream of input values, producing par-
tial results by individual ones of the second set of
functional circuits as required inputs are received,
retaining the partial results for periods of time, and
combining the partial results at required points in time,
producing a second ordered stream of output values,
additional sets of functional circuits following the first
and the second set of functional circuits, each addi-
tional set in order receiving the ordered stream of
output values of preceding sets as an ordered stream of
input values, producing partial results by individual
ones of the functional circuits as required inputs are
received, retaining the partial results for periods of
time, and combining the partial results at required
points in time, producing a final ordered stream of
output values, and an output port receiving a last
ordered output stream from the descending sets of
functional circuits and enabling the output stream to be
transmitted off the IC;

a second IC implementing a second portion of the neural
network, the second IC comprising functional circuits
implementing aperture functions connected in order
from an input port of the second IC that is connected to
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the output port of the first IC, receiving the stream of
output values produced by the first IC; and
additional ICs implementing additional portions of the
neural network, each additional IC connected to the
output port of the previous IC, receiving the output
stream of the previous IC as an input stream;

wherein a final IC provides an output stream of the neural
network.

20. The system of claim 19 wherein individual ones of the
sets of functional circuitry further comprise retention cir-
cuitry enabling retention of one or more sets of input values
received in previous input intervals, assuring that all neces-
sary input values are available to produce required output
values.
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